

Vorschubmodule VKK

Systematik der Kurzbezeichnungen

Kurzbezeichnung	=		Beispiel:	VKK	-	070	-	NN	-	1	
System	=	V orschubmodule									
Größe		050 / <u>070</u> / 100									
Ausführung	=	<u>N</u> ormalausführung									
Generation	=	Produktgeneration 1									

Änderungen/Ergänzungen auf einen Blick

- Neue Katalognummer
- Neue Produktkurzbezeichnung
- Überarbeiteter Tabellenaufbau der technischen Datentabellen und Antriebsdaten
- Überarbeitetes Kapitel "Berechnung"
- Überarbeitete Kapitel "Konfiguration, Bestellung, Maßbilder, Optionen"
- Neues Kapitel Anbauteile und Zubehör: (Motoren nach Kundenwunsch, Schalteranbau, Sensoren, usw.)

Inhalt

Produktübersicht	Produktbeschreibung		4
	Aufbau		6
Technische Daten	Allgemeine technische	e Daten	8
	Antriebsdaten		10
	Steifigkeit		12
Berechnung	Berechnungsgrundlag	en	16
	Antriebsauslegung		19
	Ergebnis		27
Konfiguration und Bestellung	VKK-050	Konfiguration und Bestellung	28
		Maßbilder	30
	VKK-070	Konfiguration und Bestellung	32
		Maßbilder	34
	VKK-100	Konfiguration und Bestellung	36
		Maßbilder	38
Anbauteile und Zubehör	Befestigung		40
	Befestigungszubehör		42
	Anbauelemente		44
	Anbausätze für Motore	en nach Kundenwunsch	46
	IndraDyn S - Servomo	toren MSK	48
	IndraDyn S - Servomo	toren MSM	50
	Schalteranbau		52
	Sensoren		54
EasyHandling			68
Service und Informationen	Betriebsbedingungen		72
	Parametrierung (Inbet	riebnahme)	73
	Schmierung und Warte	ung	74
	Dokumentation		76
	Bestellbeispiel VKK-10	00	78
	Bestellbeispiel		80
	Anfrage oder Bestellu	ng	81
	Weiterführende Inform	nationen	82
	Notizen		83

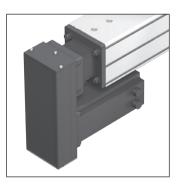
Produktbeschreibung

Rexroth Vorschubmodule VKK sind präzise, einbaufertige Linearsysteme mit hohen Leistungsmerkmalen bei kompakten Abmessungen.

Herausragende Eigenschaften

- ► Rexroth Vorschubmodule VKK sind besonders geeignet für Handlingsaufgaben, bei denen es auf hohe Präzision ankommt und gleichzeitig hohe Anforderungen an Kraftund Momentübertragung gestellt werden.
- Durch die geringe bewegte Masse sind Vorschubmodule VKK prädestiniert für vertikale Bewegungen als Z-Achsen.

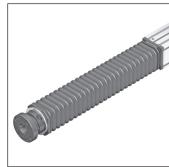
Aufbau


- Äußerst kompaktes Aluminiumprofil (Hauptkörper) mit spielfreier Kugelschienenführung
- ► Integrierter Präzisions-Kugelgewindetrieb (KGT) nach Toleranzklasse 7 mit spielfreiem Mutternsystem
- ► Festlager-Traverse aus Aluminium

Anbauteile

- ▶ Wartungsfreie Servoantriebe mit oder ohne Bremse
- ► Motorflansch und Kupplung oder Riemenvorgelege zum Motoranbau
- Schalter
- ► Faltenbalg

- Ohne Motoranbau
- Motoranbau
 - über Riemenvorgelege
 - über Motorflansch



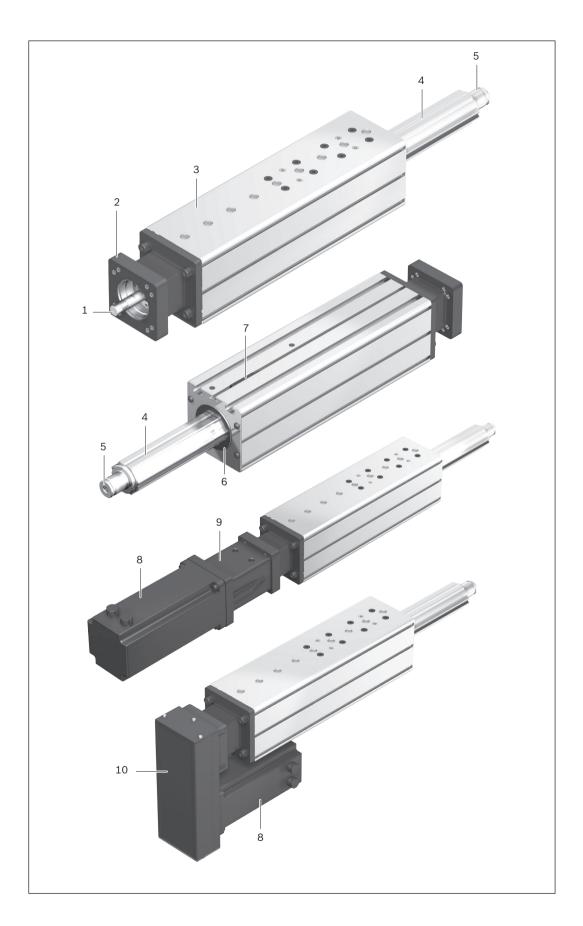
- ► Pinole mit Anbauflansch für Kundenanbauten
- Zentrierbohrungen für formschlüssige Verbindung mit guter Reproduzierbarkeit und Vereinfachung der Montage
- ► Faltenbalgabdeckung

Weitere Highlights

- ► Optimaler Ablauf, hohe Tragzahlen, hohe Steifigkeit durch integrierte, spielfreie Kugelschienenführung
- Kompakte Bauform
- ► Hohe Positionier- und Wiederholgenauigkeit durch Kugelgewindetrieb mit spielfreiem Mutternsystem
- ► Einfacher Motoranbau durch Zentrierung und Befestigungsgewinde
- ► Abgedichtete Führung
- ▶ Positionierbare Schalter über den gesamten Verfahrweg
- ► Schalterbetätigung über innenliegende Magnete
- ► Einfache Montage von vielfältigen Anbauteilen
- ▶ Voll kompatibel zum EasyHandling-System
- ► Formschlüssige Verbindungstechnik mit Zentrierringen

Typenschild

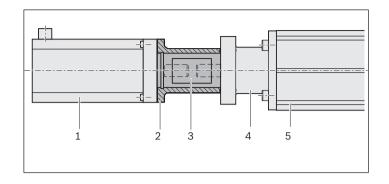
► Auf dem Typenschild finden Sie technische Daten zur Inbetriebnahme. Mit diesen technische Daten und der Software EasyWizard ist die Antriebsinbetriebnahme von Linearsystemen so einfach, schnell und sicher wie nie zuvor.


Rex	roth				n Rexr 119 Sc	· · · ·	
MNR:	R12345	678		Made	in Ge	rmar	ıy
TYP:	VKK			FD:	483	(7'	210
CS:	987654	3210	20	07		(12	210)
s _{max} (mm)	u (mm/U)	v _{max} (m/s)	a _{max} (m	/s²) M1 _m	_{nax} (Nm)	d	i
-	-	-	-		-	-	-

Aufbau

- **1** Kugelgewindetrieb mit spielfreier Mutter
- 2 Traverse Festlager
- **3** Hauptkörper
- 4 Pinole
- **5** Aufnahme für Anbauflansch
- 6 Vorsatzdichtung

Anbauteile


- 7 Magnetfeldsensor
- 8 Motor
- **9** Motorflansch und Kupplung
- 10 Riemenvorgelege

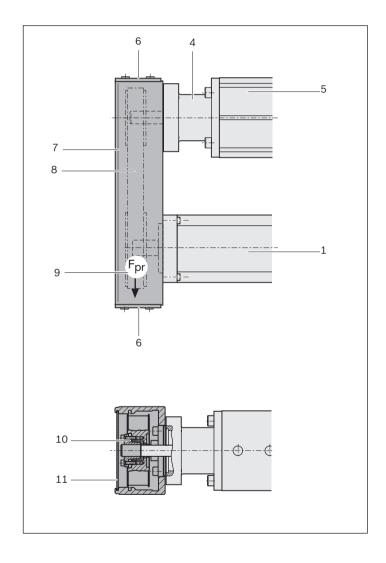
Motorflansch und Kupplung

Bei allen Vorschubmodulen kann ein Motor über Motorflansch und Kupplung angebaut werden.

Der Motorflansch dient zur Befestigung des Motors am Vorschubmodul und als geschlossenes Gehäuse für die Kupplung. Mit der Kupplung wird das Antriebsmoment des Motors verspannungsfrei auf den Spindelzapfen des Vorschubmoduls übertragen.

Riemenvorgelege

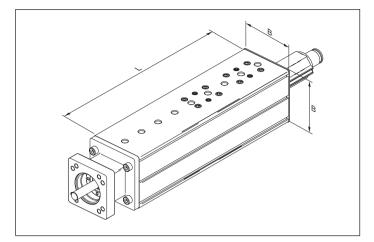
Bei allen Vorschubmodulen besteht die Möglichkeit, den Motor über ein Riemenvorgelege anzubauen.


Dadurch ist die Gesamtlänge kürzer als beim Motoranbau mit Motorflansch und Kupplung.

Das kompakte geschlossene Gehäuse dient als Riemenschutz und Motorträger. Außerdem sind verschiedene Untersetzungen lieferbar:

- -i = 1:1
- -i = 1:1,5
- -i = 1:2

Das Riemenvorgelege ist in vier Richtungen montierbar.


- 1 Motor
- 2 Motorflansch
- **3** Kupplung
- 4 Traverse Festlager
- 5 Vorschubmodul
- 6 Deckel
- 7 Gezogenes, eloxiertes Aluminiumprofil
- 8 Zahnriemen
- **9** Vorspannen des Zahnriemens: Vorspannkraft F_{pr} am Motor aufbringen (F_{pr} wird bei Lieferung bekannt gegeben)
- 10 Riemenräder
- 11 Abdeckblech

Allgemeine technische Daten

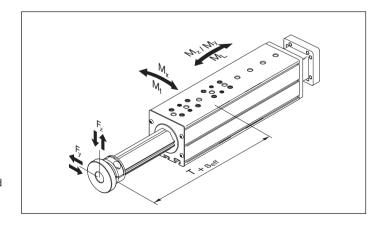
Größe		VKK-050	VKK-070	VKK-100
В	(mm)	50	70	100
L1)	(mm)	240	280	360
		280	320	400
		360	400	480
		480	520	600
		_	600	680
s _{max} ²⁾	(mm)	378	452	476

- 1) Länge
- Verfahrweg max. (ohne Faltenbalg) bei maximaler L\u00e4nge. Weitere Verfahrwege siehe Ma\u00dfbilder.

Tragzahlen und Momente

Größe	KGT	Dynamisch	e Kennwert	9			Maximal zulässi	ge Belastungen	Flächentra moment F	_	
		Dynamische Tragzahlen C (N)			Dynami Momen		Maximal zulässi Momente (Nm)	ge	<u>y</u>	y.	
	d ₀ x P (mm)	Führung	KGT	Festlager	Mt	ML	M _{t max}	M _{L max}	l _y (cm ⁴)	l _z (cm ⁴)	T (mm)
VKK-050	12 x 2	6 950	2 240	4 000	97	61	48	30	2,6	2,3	101,5
	12 x 5		3 800								
	12 x 10		2 500								
VKK-070	16 x 5	8 120	12 300	13 400	160	280	55	110	5,7	6,7	125,0
	16 x 10		9 600								
	16 x 16		6 300								
VKK-100	20 x 5	26 000	14 300	17 900	670	1 300	100	360	12,9	16,2	167,5
	20 x 20		13 300								
	25 x 10		15 700								

Sinnvolle Belastung


(Empfohlener Erfahrungswert)

Im Hinblick auf die erwünschte Lebensdauer haben sich Belastungen für F_m , F_{comb} bis etwa 20 % der dynamischen Tragzahl C als sinnvoll erwiesen. Siehe Kapitel Berechnungsgrundlagen.

Dabei dürfen die Technischen Daten nicht überschritten werden.

Hinweis zu dynamischen Tragzahlen und Momenten

Die Festlegung der dynamischen Tragzahlen und Momente der Führung basiert auf 100 000 m Hubweg. Häufig werden jedoch nur 50 000 m zugrunde gelegt. Hierfür gilt zum Vergleich: Werte C, $M_{\rm t}$ und $M_{\rm l}$ nach Tabelle mit 1,26 multiplizieren.

Kurzbezeichnungen siehe Seite 12

Masse VKK (ohne Motoranbau, ohne Motor, ohne Schaltsystem)

Größe	Länge	Masse VK	(K (kg)		Bewegte	Eigenmas	se (kg)
	L	Anbaufla	nsch	mit	Anbauflaı	nsch	mit
	(mm)	ohne	mit	Faltenbalg ¹⁾	ohne	mit	Faltenbalg ¹⁾
VKK-050	240	1,32	1,72	2,02	0,37	0,77	1,07
	280	1,47	1,87	2,17	0,42	0,82	1,12
	360	1,78	2,18	2,48	0,51	0,91	1,21
	480	2,24	2,64	2,94	0,64	1,04	1,34
VKK-070	280	2,99	3,39	3,69	0,73	1,13	1,43
	320	3,28	3,68	3,98	0,80	1,20	1,50
	400	3,88	4,28	4,58	0,92	1,32	1,62
	520	4,77	5,17	5,47	1,11	1,51	1,81
	600	5,37	5,77	6,07	1,23	1,63	1,93
VKK-100	360	8,26	8,66	9,26	1,67	2,07	2,57
	400	8,83	9,23	9,83	1,76	2,16	2,66
	480	9,98	10,38	10,98	1,93	2,33	2,83
	600	11,70	12,10	12,70	2,19	2,59	3,09
	680	12,84	13,24	13,84	2,36	2,76	3,26

¹⁾ mit Anbauflansch

Maximal zulässiges Antriebsmoment M_p am Spindelzapfen

Voraussetzung: Keine Radialbelastung am Spindelzapfen

Maximal zulässige Geschwindigkeit v_{max}

Maximal zulässige Beschleunigung a_{max}

Größe	KGT	Mp	M _{Rs}	v _{max} 1)	k _{j fix}	k _{j var}	k _{j m}	a _{max}
	d ₀ x P	(Nm)	(Nm)	(m/s)				(m/s²)
VKK-050	12 x 2	0,79	0,22	0,23	1,193	0,013	0,101	27
	12 x 5	2,50	0,22	0,57	1,212	0,012	0,633	
	12 x 10	3,20	0,23	1,16	1,824	0,034	2,533	
VKK-070	16 x 5	4,60	0,33	0,38	4,035	0,032	0,633	27
	16 x 10	6,10	0,34	0,77	4,350	0,039	2,533	
	16 x 16	6,80	0,37	1,23	4,958	0,047	6,485	
VKK-100	20 x 5	12,64	0,52	0,32	39,342	0,086	0,633	22
	25 x 10	20,50	0,67	0,63	44,273	0,244	10,132	27
	20 x 20	25,60	0.69	1.27	46,551	0.122	2,533	27

¹⁾ für alle Längen

Konstanten $\mathbf{k_{j\;fix}},\,\mathbf{k_{j\;var}},\,\mathbf{k_{j\;m}}$ Reibmoment System $\mathbf{M_{Rs}}$

Die Konstanten werden zur Ermittlung der Eigenträgheit des Systems J_s benötigt.

Antriebsdaten

Antriebsdaten bei Motoranbau über Flansch und Kupplung

Größe	Motor	Kupplungsdaten		Masse
		Nennmoment	Massenträgheits-	Motorflansch und Kupplung
		M _{cN}	moment J _c	m _{fc}
		(Nm)	(10 ⁻⁶ kgm²)	(kg)
VKK-050	MSM 019B	1,9	2,1	0,2
	MSM 031B	3,7	7,0	0,3
	MSM 031C			
VKK-070	MSM 041B	9	61	0,4
	MSM 031C	19	60	0,5
	MSK 030C			0,6
	MSK 040C			
VKK-100	MSM 041B	19	64	0,6
	MSK 050C	50	200	1,0

Antriebsdaten bei Motoranbau über Riemenvorgelege

Größe	KGT	мѕм	ISM 019B							MSM 031B							
	d ₀ x P		\mathbf{M}_{sd}		\mathbf{J}_{sd}	M _{Rsd}	m _{sd}	F	$\mathbf{B}_{\mathbf{t}}$		\mathbf{M}_{sd}		\mathbf{J}_{sd}	M_{Rsd}	m_{sd}	F	B _t
			(Nm)	(10-6	kgm²)	(Nm)	(kg)	(mm)			(Nm)	(10-6	kgm²)	(Nm)	(kg)	(mm)	
			i		i						i		i				
		1	1,5	1	1,5					1	1,5	1	1,5				
VKK-050	12 x 2	0,79	0,53	10,7	4,1	0,10	0,28	48	6	0,79	0,53	34,8	13,0	0,15	0,63	64,5	
	12 x 5	1,31	0,87						AT3	2,48	1,65						AT3
	12 x 10	1,31	0,87							2,70	1,80						

Größe	KGT	MSM	031C							MSM	041B						
	d ₀ x P		M _{sd} (Nm)	(10-6	J _{sd} kgm²)	M _{Rsd} (Nm)	m _{sd} (kg)	F (mm)	B _t		M _{sd} (Nm)	(10-6	J _{sd} kgm²)	M _{Rsd} (Nm)	m _{sd} (kg)	F (mm)	B _t
			i		i						i		i				
		1	1,5	1	1,5					1	1,5	1	1,5				
VKK-070	16 x 5	3,17	2,11	41,5	13,3	0,35	0,28	64,5	10	4,31	2,87	233,9	79,1	0,4	1,45	88	16
	16 x 10	3,17	2,11						AT3	5,85	3,90						AT5
	16 x 16	3,17	2,11							6,42	4,28						
VKK-100	20 x 5									8,01	5,34	240	84				
	20 x 20	-	_	_	_	_	-	_	_	8,01	5,34						
	25 x 10									8,01	5,34						

Antriebsdaten bei Motoranbau über Riemenvorgelege

Größe	KGT	MSK	030C							MSK 0	40C						
	d ₀ x P		M _{sd} (Nm)	(10-6	J _{sd} kgm²)	M _{Rsd} (Nm)	m _{sd} (kg)	F (mm)	Bt		M _{sd} (Nm)	(10-	J _{sd} kgm²)	M _{Rsd} (Nm)	m _{sd} (kg)	F (mm)	B _t
			i		i						i		i				
		1	1,5	1	1,5					1	1,5	1	1,5				
VKK-050	12 x 2	0,79	0,53	34,3	12,5	0,35	0,65	64,5	10	-	-	-	-	-	-	-	-
	12 x 5	2,48	1,65						AT3								
	12 x 10	2,70	1,80														
VKK-070	16 x 5	3,17	2,11	37,3	13,4					4,31	2,87	234,4	83,6	0,4	1,42	88	16
	16 x 10	3,17	2,11							5,85	3,90						AT5
	16 x 16	3,17	2,11							6,42	4,28						

Größe	KGT	MSK 050C						,	
	d ₀ x P		M _{sd} (Nm)		J _{sd} (10 ⁻⁶ kgm²)	M _{Rsd} (Nm)	m _{sd} (kg)	F (mm)	Bt
			i		i				
		1	2	1	2				
VKK-100	20 x 5	10,20	5,10	1 420	230	0,45	3,2	116	25 AT5
	20 x 20	14,30	7,15						
	25 x 10	13,10	6,55						

= Dynamisches Torsionsmoment M_L = Dynamisches Längstragmoment M_{t max} = Maximal zulässiges Torsionsmoment

M_{L max} = Maximal zulässiges Längsmoment = Flächenträgheitsmoment bezogen auf die y-Achse I_{z} = Flächenträgheitsmoment bezogen auf die x-Achse

= Maximale Beschleunigung (m/s²) a_{max} = Nenndurchmesser d_0 (mm)

KGT = Kugelgewindetrieb = Maximal zulässiges Antriebsmoment (Nm) M_p $\dot{M_{Rs}}$ = Reibmoment System (Nm) Ρ = Steigung (mm)

= Maximale zulässige Geschwindigkeit (m/s) v_{max}

 B_t = Riementyp

= Breite Riemenvorgelege = Übersetzung Riemenvorgelege = Massenträgheitsmoment Kupplung J_c

 J_{sd} = Massenträgheitsmoment Riemenvorgelege am Motorzapfen = Konstante für fixen Anteil am Massenträgheitsmoment k_{j fix}

= Konstante für längenvariablen Anteil am Massenträgheitsmoment k_{j var} = Konstante für massenspezifischen Anteil am Massenträgheits moment k_{j m} J_{sd}

= Reduziertes Massenträgheitsmoment Riemenvorgelege

= Reibmoment Riemenvorgelege am Motorzapfen M_{Rsd}

= Nennmoment Kupplung

= Zulässiges Drehmoment für System mit Riemenvorgelege am Motorzapfen M_{sd}

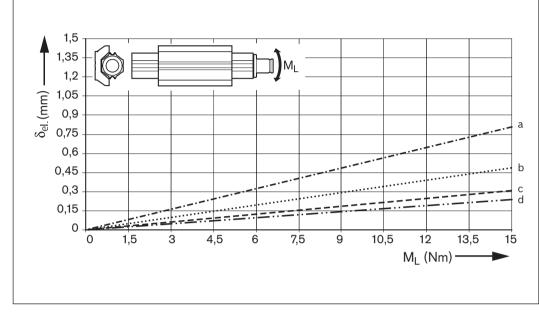
 $\label{eq:max_max_max} \begin{tabular}{ll} \hline Maximal zulässiges Drehmoment M_{max} vom Motor beachten \\ \hline \end{tabular}$

= Masse Riemenvorgelege m_{sd}

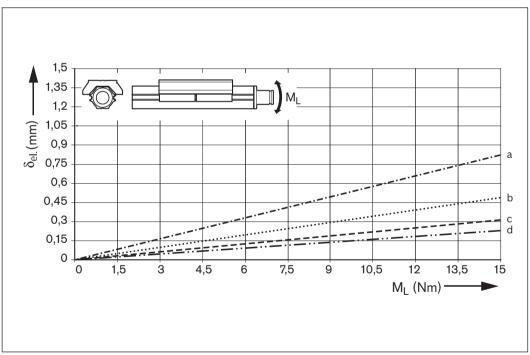
= Masse Motorflansch und Kupplung $m_{fc} \\$

Steifigkeit

Steifigkeit der Pinole Vorschubmodul VKK-050 Steifigkeit in y-Richtung


Gemessene Werte.

Legende

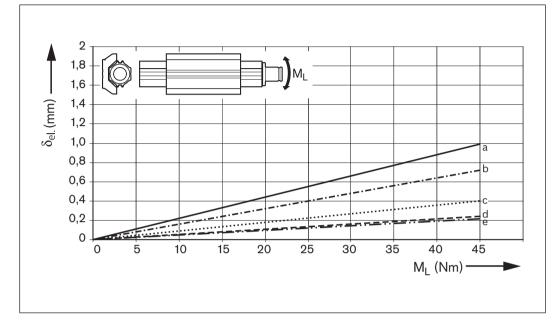

- **a)** Länge L = 480 mm
- **b)** Länge L = 360 mm
- c) Länge L = 280 mm
- **d)** Länge L = 240 mm

 δ_{el} = Elastische Verformung (mm)

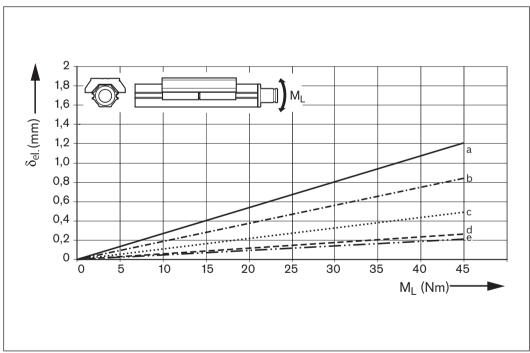
M_L = Dynamisches Längstragmoment (Nm)

Steifigkeit in z-Richtung

Steifigkeit der Pinole Vorschubmodul VKK-070 Steifigkeit in y-Richtung


Gemessene Werte.

Legende


- **a)** Länge L = 600 mm
- **b)** Länge L = 520 mm
- **c)** Länge L = 400 mm
- **d)** Länge L = 320 mm
- **e)** Länge L = 280 mm

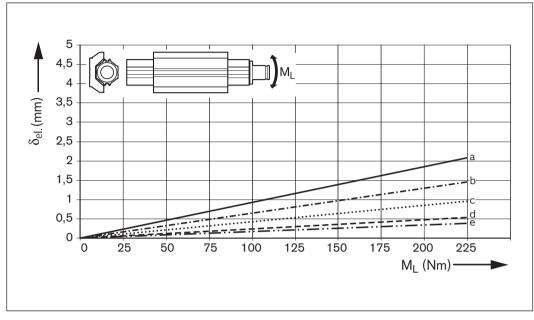
 δ_{el} = Elastische Verformung (mm) M_L = Dynamisches

Längstragmoment (Nm)

Steifigkeit in z-Richtung

Steifigkeit der Pinole Vorschubmodul VKK-100 Steifigkeit in y-Richtung

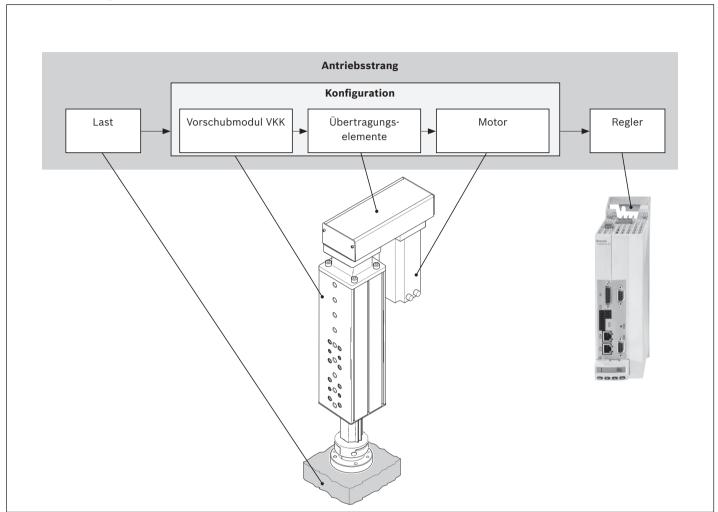
Gemessene Werte.


Legende

- a) Länge L = 680 mm
- **b)** Länge L = 600 mm
- **c)** Länge L = 480 mm
- **d)** Länge L = 400 mm
- e) Länge L = 360 mm


 δ_{el} = Elastische Verformung (mm) M_L = Dynamisches

Längstragmoment (Nm)



Steifigkeit in z-Richtung

Berechnungsgrundlagen

Antriebsstrang

Die korrekte Dimensionierung und Beurteilung einer Anwendung erfordert die strukturierte Betrachtung des gesamten Antriebsstrangs. Das Grundelement des Antriebsstrangs bildet die Konfiguration, die das Linearsystem, das Übertragungselement (Kupplung oder Riemenvorgelege) und den Motor umfasst und in dieser Konstellation gemäß Katalog bestellt werden kann.

Maximal zulässige Belastungen

Bei der Auswahl von Linearsystemen sind maximale Grenzen für zulässige Belastungen und Kräfte zu berücksichtigen, die im Kapitel "Allgemeine technische Daten" zu finden sind. Die dort hinterlegten Werte sind systembedingt, d.h. diese Grenzen haben ihren Ursprung nicht nur in der Tragzahl der Lagerstellen, sondern beinhalten darüber hinaus konstruktionsbzw. materialbedingte Grenzen.

Bedingung für kombinierte Belastungen

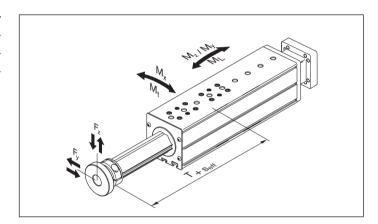
$$\frac{|F_{y}|}{|F_{y \text{ max}}|} + \frac{|F_{z}|}{|F_{z \text{ max}}|} + \frac{|M_{x}|}{|M_{x \text{ max}}|} + \frac{|M_{y}|}{|M_{y \text{ max}}|} + \frac{|M_{z}|}{|M_{z \text{ max}}|} \le 1$$

Lebensdauer

Für die in einem Linearsystem enthaltenen Wälzlagerstellen kann die Lebensdauer anhand nachfolgender Formeln ermittelt werden. Die lebensdauerrelevanten Wälzlagerstellen in einem Linearsystem mit Kugelgewindetrieb sind die Linearführung, der Kugelgewindetrieb (Mutter) und das Festlager.

Lebensdauer der Linearführung

Die Linearführung des Linearsystems muss die Last und eventuell auftretende Prozesskräfte aufnehmen.


Kombinierte äquivalente Lagerbelastung der Führung

Größe	Т
	(mm)
VKK-050	101,5
VKK-070	125,0
VKK-100	167,5

Hinweis

Die rechnerische Lebensdauerangabe für das Linearsystem wird durch den kleinsten der separat ermittelten Lebensdauerwerte für Linearführung, Kugelgewindetrieb oder Festlager bestimmt.

$$F_{comb} = C \cdot \frac{|M_x|}{M_t} + C \cdot \frac{|M_y|}{M_L} + C \cdot \frac{|M_z|}{M_L}$$

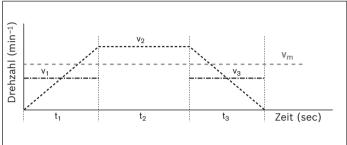
Nominelle Lebensdauer in Metern

in Stunden

$$L = \left(\frac{C}{F_{comb}}\right)^3 \cdot 10^5$$

$$L_h = \frac{L}{3 600 \cdot v_m}$$

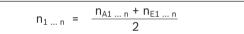
С	=	Dynamische Tragzahl	(N)
F_{comb}	=	Kombinierte äquivalente Lagerbelastung	(N)
L	=	Nominelle Lebensdauer	(m)
L _h	=	Nominelle Lebensdauer	(h)
M_L	=	Dynamisches Längstragmoment	(Nm)
M_t	=	Dynamisches Torsionsmoment	(Nm)
M_{x}	=	Dynamisches Torsionsmoment um die x-Achse	(Nm)
M_v	=	Dynamisches Torsionsmoment um die y-Achse	(Nm)
M_z	=	Dynamisches Torsionsmoment um die z-Achse	(Nm)
v_{m}	=	Mittlere Geschwindigkeit	(m/s)
Seff	=	Effektiver Hub	(mm)
T + s _{eff}	=	Abstand Mitte Führungswagen bis Mitte Aufnahme	zapfen

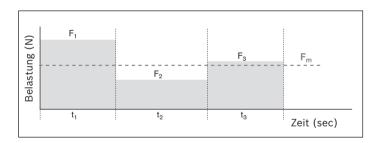

Berechnungsgrundlagen

Lebensdauer des Kugelgewindetriebs oder des Festlagers

Bei veränderlicher Drehzahl gilt für die mittlere Drehzahl n_m:

Belastung veränderlich) müssen bei der Berechnung der Lebensdauer die mittleren Werte \mathbf{F}_{m} und \mathbf{n}_{m} verwendet werden.


Bei veränderlichen Betriebsbedingungen (Drehzahl und



$$n_m = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \dots + |n_n| \cdot t_n}{t_{ges}}$$

$$t_{ges} = t_1 + t_2 + ... + t_n$$

Bei veränderlicher Belastung und veränderlicher Drehzahl gilt für die mittlere Belastung Fm:

$$\mathsf{F}_{\mathsf{m}} = \sqrt[3]{|\mathsf{F}_{1}|^{3} \cdot \frac{|\mathsf{n}_{1}|}{\mathsf{n}_{\mathsf{m}}} \cdot \frac{\mathsf{t}_{1}}{\mathsf{t}_{\mathsf{ges}}} + |\mathsf{F}_{2}|^{3} \cdot \frac{|\mathsf{n}_{2}|}{\mathsf{n}_{\mathsf{m}}} \cdot \frac{\mathsf{t}_{2}}{\mathsf{t}_{\mathsf{ges}}} + \ldots + |\mathsf{F}_{\mathsf{n}}|^{3} \cdot \frac{\mathsf{n}_{\mathsf{n}}}{\mathsf{n}_{\mathsf{m}}} \cdot \frac{\mathsf{t}_{\mathsf{n}}}{\mathsf{t}_{\mathsf{ges}}}}$$

$$L = \left(\frac{C}{F_m}\right)^3 \cdot 10^6$$

$$L_h = \frac{L}{n_m \cdot 60}$$

 $t_1, t_2, ... t_n$

t_{ges}

= Dynamische Tragzahl (N) F_1 , F_2 , ... F_n = Axialbelastung während der Phasen 1 ... n (N) F_{m} = Dynamisch äquivalente Axialbelastung (N) (–) (h) = Nominelle Lebensdauer = Nominelle Lebensdauer $n_1,\,n_2,\,\dots\,_{nn}$ = Drehzahlen in den Beschleunigungs- und Bremsphasen 1 ... n (min^{-1}) = Enddrehzahl in Phase 1 ... n (min^{-1}) $n_{E1} \; ... \; \; n$ (min^{-1}) = Mittlere Drehzahl n_{m} = Anfangsdrehzahl in Phase 1 ... n (min_{-1}) n_{A1}... _n (min_{-1}) = Enddrehzahl in Phase 1 ... n $n_{E1\cdots\;n}$

(sec)

(sec)

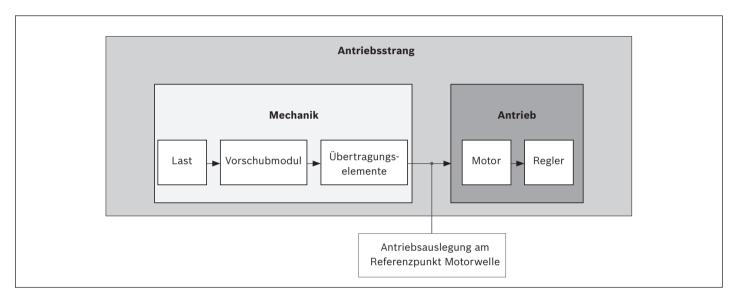
= Zeitanteil der Phasen 1 ... n

= Summe Zeitanteile

Drehzahl in Beschleunigungs- und Bremsphasen n_{1...n}:

Nominelle Lebensdauer in Umdrehungen

in Stunden


Antriebsauslegung

Grundlagen

Für die Antriebsauslegung lässt sich der Antriebsstrang in die Bereiche Mechanik und Antrieb unterteilen.

Der Bereich **Mechanik** umfasst die Komponenten Linearsystem und Übertragungselemente (Riemenvorgelege, Kupplung) sowie die Berücksichtigung der Last. Als elektrischer **Antrieb** wird eine Motor-Regler-Kombination mit den entsprechenden Leistungswerten bezeichnet.
Die Auslegung bzw. Dimensionierung des elektrischen
Antriebs erfolgt am Referenzpunkt Motorwelle.
Für eine Antriebsauslegung müssen sowohl Grenzwerte als auch Basiswerte berücksichtigt werden. Die Grenzwerte sind einzuhalten, um die mechanischen Komponenten vor

Beschädigungen zu schützen.

Technische Daten und Formelzeichen der Mechanik

Für jede Komponente (Linearsystem, Kupplung, Riemenvorgelege) sind die entsprechenden maximal zulässigen Grenzwerte für Antriebsmoment und Geschwindigkeit sowie die Basiswerte Reibmoment und Massenträgheitsmoment zu finden siehe "Antriebsdaten" im Kapitel "Allgemeine Technische Daten".

Folgende technische Daten mit den zugehörigen Formelzeichen werden für den Bereich Mechanik in den Grundlagenbetrachtungen der Antriebsauslegung verwendet. Die in der nachfolgenden Tabelle aufgelisteten Daten befinden sich im Kapitel "Allgemeine Technische Daten" oder sie werden mit Formeln gemäß den Beschreibungen auf den nachfolgenden Seiten ermittelt.

		Mechanik			
		Last	Linearsystem	Übertragungse	elemente
				Kupplung	Riemenvorgelege
Gewichtsmoment	(Nm)	M _g ⁶⁾	_	_	_
Reibmoment	(Nm)	5)	M _{Rs} ³⁾	_	M _{Rsd} ³⁾
Massenträgheitsmoment	(kgm²)	J _t 1)	J _s ²⁾	J _c ³⁾	J _{sd} ³⁾
Max. zulässige Geschwindigkeit	(m/s)	_	V _{max} ⁴⁾	_	_
Max. zulässiges Antriebsmoment	(Nm)	_	M _p ⁴⁾	M _{cN} 3)	M _{sd} ³⁾

¹⁾ Wert gemäß Formel ermitteln

²⁾ Längenabhängiger Wert, Ermittlung gemäß Formel

³⁾ Wert aus Tabelle entnehmen

⁴⁾ Längenabhängiger Wert, Ablesen aus Diagramm

⁵⁾ Zusätzlich auftretende Prozesskräfte sind als Lastmoment zu berücksichtigen

Antriebsauslegung

Antriebsauslegung am Referenzpunkt Motorzapfen

Für die Antriebsauslegung müssen alle relevanten Rechenwerte der im Antriebsstrang enthaltenen mechanischen Komponenten zusammengefasst bzw. reduziert auf die Motorzapfen ermittelt werden. Für eine Kombination mechanischer Komponenten innerhalb des Antriebsstrangs ergibt sich somit jeweils ein Wert für:

Ermittlung der Werte für die einzelnen im Antriebsstrang enthaltenen Mechanik-Komponenten bezogen auf den Referenzpunkt Motorzapfen.

- ► Reibmoment M_R
- ► Massenträgheitsmoment J_{ex}
- max. zulässige Geschwindigkeit v_{mech} (max. zulässige Drehzahl n_{mech})
- ► max. zulässiges Antriebsmoment M_{mech}

Reibmoment M_R

Bei Motoranbau über Flansch und Kupplung

Bei Motoranbau über Riemenvorgelege

$$M_R = M_{Rs}$$

$$M_R = M_{Rsd} + \frac{M_{Rs}}{i}$$

Massenträgheitsmoment Jex

Bei Motoranbau über Flansch und Kupplung

Bei Motoranbau über Riemenvorgelege

Ermittlung des Massenträgheitsmoments der Komponente Linearsystem

Ermittlung des translatorischen Massenträgheitsmoments der Fremdmasse

$$J_{ex} = J_s + J_t + J_c$$

$$J_{ex} = J_{sd} + \frac{(J_s + J_t)}{i^2}$$

$$J_s = (k_{j \text{ fix}} + k_{j \text{ var}} \cdot L) \cdot 10^{-6}$$

$$J_t = m_{ex} \cdot k_{jm} \cdot 10^{-6}$$

Maximal zulässige Geschwindigkeit v_{mech}

Der jeweils kleinste Wert der zulässigen Geschwindigkeit aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt die maximal zulässige Geschwindigkeit der Mechanik, die als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist.

Die maximal zulässige Geschwindigkeit bzw. Drehzahl des Linearsystems mit Kugelgewindetrieb liegt systembedingt immer unter den Grenzwerten für die Komponenten Kupplung oder Riemenvorgelege und bestimmt somit die Grenze für die maximal zulässige Geschwindigkeit der Mechanik.

Maximal zulässige Geschwindigkeit

Maximal zulässige Drehzahl Bei Motoranbau über Flansch und Kupplung

Bei Motoranbau über Riemenvorgelege

Maximal zulässiges Antriebsmoment M_{mech}

Der jeweils kleinste Wert (Minimum) des zulässigen Antriebsmoments aller im Antriebsstrang enthaltenen mechanischen Komponenten bestimmt das maximal

Bei Motoranbau über Flansch und Kupplung

Bei Motoranbau über Riemenvorgelege

Hinweis

Bei Betrachtung des kompletten Antriebsstrangs (Mechanik und Motor/Regler) kann das Maximaldrehmoment des Motors auch unterhalb der Grenze der Mechanik (M_{mech}) liegen und somit die Grenze für das maximal zulässige Antriebsmoment des Antriebsstrang bilden.

Liegt das Maximaldrehmoment des Motors über der Grenze der Mechanik (M_{mech}), dann muss das maximale Motordrehmoment auf den zulässigen Wert der Mechanik begrenzt werden!

 $v_{mech} = v_{max}$

$$n_{mech} = \frac{v_{mech} \cdot 1\ 000 \cdot 60}{P}$$

$$n_{\text{mech}} = \frac{v_{\text{mech}} \cdot i \cdot 1\ 000 \cdot 60}{P}$$

zulässige Antriebsmoment der Mechanik, das als Antriebsgrenze bei der Motorauslegung zu berücksichtigen ist.

$$M_{mech} = Minimum (M_{cn}; M_p)$$

$$M_{mech}$$
 = Minimum $(M_{sd}; \frac{M_p}{i})$

i	=	Übersetzung des Riemenvorgeleges	(—)
J_c	=	Massenträgheitsmoment der Kupplung	(kgm²)
Jex	=	Massenträgheitsmoment der Mechanik	(kgm ²)
Js		Massenträgheitsmoment des Linearsystems	(kgm ²)
J_{sd}	=	Massenträgheitsmoment des Riemenvorgeleges	
		am Motorzapfen	(kgm ²)
J_t	=	Translatorisches Fremdmassenträgheitsmoment	
		bezogen auf den Linearsystem-Spindelzapfen	(kgm²)
		Konstante für fixen Anteil am Massenträgheitsmoment	(—)
k _{j m}	=	Konstante für massenspezifischen Anteil	
		am Massenträgheitsmoment	(—)
k _{j var}	=	Konstante für längenvariablen Anteil	
		am Massenträgheitsmoment	(—)
L	=	Länge des Linearsystems	(mm)
m_{ex}		Bewegte Fremdmasse	(kg)
M_R		Reibmoment am Motorzapfen	(Nm)
M_Rs		Reibmoment System	(Nm)
M_{Rsc}	=	Reibmoment Riemenvorgelege am Motorzapfen	(Nm)

Antriebsauslegung

Antriebsauslegung

Grobe Vorauswahl des Motors

Eine grobe Vorauswahl des Motors kann anhand folgender Bedingungen vorgenommen werden.

Bedingung 1:

Die Drehzahl des Motors muss größer oder gleich der erforderlichen Drehzahl der Mechanik sein (bis zum maximal zulässigen Grenzwert).

Bedingung 2:

Betrachtung des Verhältnisses der Massenträgheitsmomente von Mechanik und Motor. Das Verhältnis der Trägheitsmomente dient als Indikator für die Regelungsgüte einer Motor-Regler-Kombination. Das Massenträgheitsmoment des Motors steht in direktem Bezug zur Motorgröße.

Trägheitsmomentenverhältnis

Für die Vorauswahl können folgende Erfahrungswerte für eine hohe Regelungsgüte herangezogen werden. Hierbei handelt es sich nicht um starre Grenzen, jedoch erfordern Werte über diesen Grenzen eine genauere Betrachtung der Anwendung.

$$n_{max} \ge n_{mech}$$

$$V = \frac{J_{ex}}{J_m + J_{br}}$$

Anwendungsbereich	٧
Handling	≤ 6,0
Bearbeitung	≤ 1,5

i	= Übersetzung des Riemenvorgeleges	(-)
J_{br}	= Massenträgheitsmoment der Motorbremse	(kgm ²)
J _{ex}	= Massenträgheitsmoment der Mechanik	(kgm ₂)
J_{m}	= Massenträgheitsmoment des Motors	(kgm ²)
M_p	= Maximal zulässiges Antriebsmoment	
	des Linearsystems	(Nm)
M_{cN}	= Nennmoment der Kupplung	(Nm)
M_{sd}	= Maximal zulässiges Antriebsmoment	
	des Riemenvorgeleges	(Nm)
M_{mech}	= Maximal zulässiges Antriebsmoment der Mechanik	(Nm)
n _{max}	= Maximaldrehzahl des Motors	(min ⁻¹)
n_{mech}	= Maximal zulässige Drehzahl der Mechanik	(min ⁻¹)
Р	= Spindelsteigung	(mm)
v_{max}	= Maximal zulässige Geschwindigkeit des Linearsystems	(m/s)
V	= Verhältnis der Massenträgheitsmomente	
	von Antriebsstrang und Motor	(—)
Vmoch	= Maximal zulässige Geschwindigkeit der Mechanik	(m/s)

Bedingung 3:

Abschätzung des Drehmomentenverhältnisses vom statischen Lastmoment zum Dauerdrehmoment des Motors. Das Drehmomentverhältnis muss kleiner oder gleich dem empirischen Wert 0,6 sein. Durch diese Bedingung werden

die noch fehlenden Dynamikwerte eines exakten Bewegungsprofils mit den erforderlichen Motormomenten überschlägig berücksichtigt.

Drehmomentverhältnis:

Statisches Lastmoment:

Gewichtsmoment:

Nur bei vertikaler Einbaulage! Bei Motoranbau über Flansch und Kupplung: i = 1

Im Kapitel "Konfiguration und Bestellung" können für die verschiedenen Linearsystem-Baugrößen standardmäßig Konfigurationen inklusive Motoranbau und Motor durch Auswählen von Optionen erstellt werden.

Durch Erfüllung der Bedingungen wird überprüft, ob ein in der Konfiguration ausgewählter Standardmotor von der Baugröße her grundsätzlich für die Applikation geeignet ist.

Exakte Antriebsauslegung

Die grobe Vorauswahl des Motors ersetzt nicht die erforderliche genaue Antriebsberechnung mit detaillierter Momenten- und Drehzahlbetrachtung. Für eine exakte Berechnung des elektrischen Antriebs mit Berücksichtigung des zugrunde liegenden Bewegungsprofils sind die Leistungsdaten aus Katalog "IndraDrive Cs" heranzuziehen. Bei der Antriebsauslegung müssen die maximal zulässigen Grenzwerte für die Geschwindigkeit, das Antriebsmoment und die Beschleunigung eingehalten werden, um die Mechanik vor Beschädigungen zu schützen.

$$\frac{M_{\text{stat}}}{M_0} \le 0.6$$

$$M_{stat} = M_R + M_g$$

$$M_g = \frac{P \cdot (m_{ex} + m_{ca}) \cdot g}{2 \ 000 \cdot \pi \cdot i}$$

g	=	Erdbeschleunigung (= 9,81)	(m/s ²)
i	=	Übersetzung des Riemenvorgeleges	(—)
m_{ca}	=	Bewegte Eigenmasse des Tischteils	(kg)
m_{ex}	=	Bewegte Fremdmasse	(kg)
M_g	=	Gewichtsmoment am Motorzapfen	(Nm)
M_0	=	Dauerdrehmoment des Motors	(Nm)
M_R	=	Reibmoment am Motorzapfen	(Nm)
M_{stat}	=	Statisches Lastmoment	(Nm)
Р	=	Spindelsteigung	(mm)
π	=	Kreiszahl	(—)

Antriebsauslegung

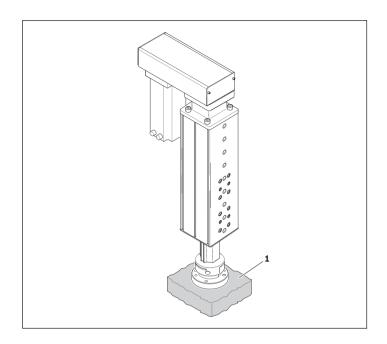
Ausgangsdaten:

Bei einer Handhabungsaufgabe soll eine Masse (m_{ex}) von 15 kg mit einer Geschwindigkeit von 0,5 m/s um 300 mm vertikal bewegt werden. Gewählt wurde aufgrund der technischen Daten und der Bauraumbedingungen:

Vorschubmodul VKK-070:

- mit Anbauflansch
- ▶ ohne Faltenbalgabdeckung
- ► Motoranbau über Riemenvorgelege, i = 1,5
- mit Servomotor MSM 031C mit Bremse

Auswahl des Kugelgewindetriebes


(Vorzugsweise die kleinste Steigung wählen, da vorteilhaft bzgl. Auflösung Bremsweg, Länge).

Berechnung der Schlittenlänge L:

(für gewählten KGT)

Reibmoment M_R:

(Motoranbau über Riemenvorgelege)

Zulässige Kugelgewindetriebe nach Diagramm "Zulässige Geschwindigkeit" bei v = 0,5 m/s:

KGT 16 x 10 und KGT 16 x 16

Gewählter Kugelgewindetrieb (kleinere Steigung):

KGT 16 x 10

maximal zulässige Geschwindigkeit für KGT 16 x 10 aus Diagramm:

 $v_{max} = 0.77 \text{ m/s}$

Überlauf (je Seite): $s_e = 2 \cdot P = 2 \cdot 10 = 20 \text{ mm}$

Verfahrweg max.: $s_{max} = s_{eff} + 2 \cdot s_e$

 $= 300 + 2 \cdot 20 = 340 \text{ mm}$

Nächstgrößerer verfügbarer max. Verfahrweg aus

Tabelle: $s_{max} = 374 \text{ mm}$ entsprechende Länge aus Tabelle:

 $L = 520 \, \text{mm}$

 $M_{R} = M_{Rsd} + \frac{M_{RS}}{i}$ VKK: $M_{Rs} = 0,34 \text{ Nm}$ Riemenvorgelege: $M_{Rsd} = 0,35 \text{ Nm}$

Reibmoment: $M_R = 0.35 + \frac{0.34}{1.5} = 0.57 \text{ Nm}$

Massenträgheitsmoment Jex

Bei Motoranbau über Riemenvorgelege

$$J_{ex} = J_{sd} + \frac{(J_s + J_t)}{i^2}$$

Riemenvorgelege Überlauf $J_{sd} = 13,3 \cdot 10^{-6} \text{ kgm}^2$

VKK $J_S = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6} = (4,35 + 0,039 \cdot 520) \cdot 10^{-6} = 24,63 \cdot 10^{-6} \text{ kgm}^2$

Fremdmasse $J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6} = 15 \cdot 2,533 \cdot 10^{-6} = 37,995 \cdot 10^{-6} \text{ kgm}^2$

Trägheitsmoment $J_{ex} = 13.3 \cdot 10^{-6} + = \frac{(24.63 \cdot 10^{-6} + 37.995 \cdot 10^{-6})}{1.52} = 41.133 \cdot 10^{-6} \text{ kgm}^2$

Maximal zulässige Drehzahl n_{mech}

Bei Motoranbau über Riemenvorgelege

$$n_{mech} = \frac{v_{mech} \cdot i \cdot 1000 \cdot 60}{P}$$

Max. zul. Geschwindigkeit: $v_{mech} = v_{max} = 0.77 \text{ m/s}$

Max. zul. Drehzahl: $n_{mech} = \frac{(0,77 \cdot 1,5 \cdot 1\ 000 \cdot 60)}{10} = 6\ 930\ min^{-1}$

Drehzahl der Anwendung n_{mech}

Bei Motoranbau über Riemenvorgelege

Geschwindigkeit: $v_{mech} = 0.5 \text{ m/s}$

Drehzahl: $n_{\text{mech}} = \frac{(0.5 \cdot 1.5 \cdot 1.000 \cdot 60)}{10} = 4.500 \text{ min}^{-1}$

Maximal zulässiges Antriebsmoment M_{mech}

Bei Motoranbau über Riemenvorgelege

Grenzwert Mechanik

$$M_{mech}$$
 = Minimum $(M_{sd}; \frac{M_p}{i})$

Riemenvorgelege: $M_{sd} = 2,11 \text{ Nm (Übersetzung i = 1,5 für MSM 031C)}$

VKK: $M_P = 6.1 \text{ Nm}$

Antriebsmoment: $M_{\text{mech}} = \text{Minimum } (2,11; \frac{6,1}{1.5}) = \text{Minimum } (2,11; 4,06) = 2,11 \text{ Nm}$

Berechnungsbeispiel

Berechnungsbeispiel Antriebsauslegung

Überprüfung der Motorvorauswahl

gewählter Motor: MSM 031C mit Bremse

Bedingung 1:

 $n_{max} \ge n_{mech}$

5 000 ≥ 4 500; Bedingung erfüllt - Motorgröße in Ordnung

Bedingung 2

Trägheitsmomentenverhältnis: $V = \frac{J_{ex}}{J_m + J_{br}}$

Motorträgheit: $J_m = 26 \cdot 10^{-6} \text{ kgm}^2$

Bremsenträgheit: $J_{br} = 1.8 \cdot 10^{-6} \text{ kgm}^2$

Trägheitsverhältnis: $V = \frac{41,133 \cdot 10^{-6}}{(26 \cdot 10^{-6} + 1,8 \cdot 10^{-6})} = 1,48$

Bedingung Handling: V ≤ 6; 1,48 ≤ 6; Bedingung erfüllt - Motorgröße in Ordnung

Bedingung 3

Drehmomentenverhältnis: $M_{stat} / M_0 \le 0.6$

Statisches Lastmoment: $M_{stat} = M_R + Mg$

Gewichtsmoment: $M_g = P \cdot (m_{ex} + m_{ca}) \cdot g/2 \ 000 \cdot \pi \cdot i = 10 \cdot (15 + 1,51) \cdot 9,81/2 \ 000 \cdot \pi \cdot 1,5 = 0,17 \ Nm$

Statisches Lastmoment: $M_{stat} = 0.57 + 0.17 = 0.74 \text{ Nm}$

Dauerdrehmoment des Motors: $M_0 = 1,3 \text{ Nm}$

Drehmomentverhältnis: 0,74 /1,3 = 0,57, 0,57 ≤ 0,6; Bedingung erfüllt - Motorgröße in Ordnung

Ergebnis

Vorschubmodul:VKK-070Länge:L = 520 mmVerfahrweg max.: s_{max} = 374 mm

mit Anbauflansch KGT 16 x 10

ohne Faltenbalgabdeckung

Motoranbau über Riemenvorgelege, Übersetzung i =1,5

Vorauswahl Motor: MSM 031C mit Bremse

Für die exakte Auslegung des elektrischen Antriebs ist stets die Kombination Motor-Regelgerät zu betrachten, da die Leistungsdaten (z.B. maximale Nutzdrehzahl und maximales Drehmoment) vom verwendeten Regelgerät abhängig sind.

Hierbei sind folgende Daten zu berücksichtigen.

Reibmoment: $M_R = 0.57 \text{ Nm}$

Massenträgheitsmoment: $J_{ex} = 41,133 \cdot 10^{-6} \text{ kgm}^2$

Geschwindigkeit: $v_{\text{mech}} = 0.5 \text{ m/s } (n_{\text{mech}} = 4.500 \text{ min}^{-1})$

Grenzwert für Antriebsmoment: $M_{mech} = 2,11 \text{ Nm}$ => Das Motormoment muss antriebseitig auf 2,11 Nm begrenzt werden! **Grenzwert für Beschleunigung:** $a_{max} = 27 \text{ m/s}^2$

Grenzwert für Geschwindigkeit: $v_{mech} = 0,77 \text{ m/s} \text{ (}n_{mech} = 6 \text{ 930 min}^{-1}\text{)}$

Neben dem Vorzugstyp MSM 031C können auch andere Motoren mit identischen Anbauabmessungen adaptiert werden, wobei die ermittelten Grenzwerte nicht überschritten werden dürfen.

VKK-050

Konfiguration und Bestellung

	zeichnung, Länge 0-NN-1, mm		Führung	Antriek	•			Tischteil		
Ausfüh	rung			ıpfen	KGT Gr	öße		Ohne Anbauflansch	Mit Anbauflansch	
				Spindelzapfen	12x2	12x5	12x10	5	I	
mit KGT ohne Motorflansch	OF01	OF01		Ø6	01	02	03	03	04	
mit KGT und Motorflansch	MF01	MF01	L = 240 mm 12 L = 280 mm 13 L = 360 mm 15	Ø6	01	02	03	03	04	
mit KGT und Riemenvorgelege	RV01 ¹⁾ RV02 RV03 RV04	RV01 bis RV04	L = 480 mm 18	Ø 6	01	02	03	03	04	

Bestellbeispiel: Siehe "Anfrage/Bestellung"

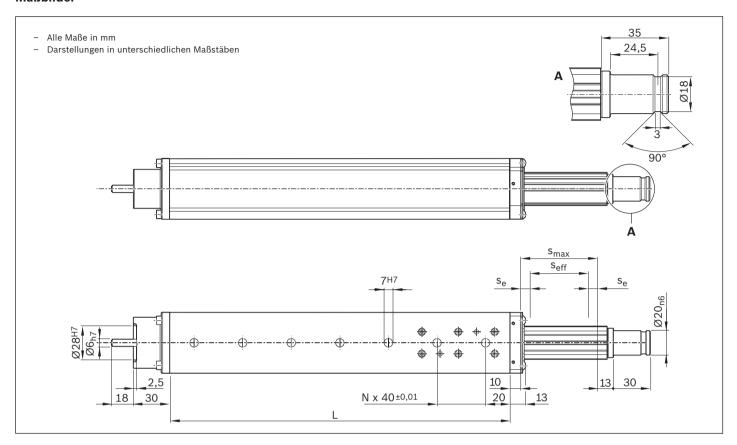
 $\begin{array}{lll} \text{KGT} & = & \text{Kugelgewindetrieb} \\ \text{d}_0 & = & \text{Nenndurchmesser} & \text{(mm)} \\ \text{P} & = & \text{Steigung} & \text{(mm)} \end{array}$

Motoranbau			Motor		Abdeck	ung	Schaltsystem		Dokumentati	on
Übersetzung Anbausatz 2)) für Motor oh		ohne mit		mit		Standard- Mess-		
i =					ohne mit Faltenbalg			protokoll	protokoll ⁵⁾	
			Bremse		Faitenbaig					
	00	-	0	0						
	04	MSM 019B	134	135			Ohne Schalter	00		02
1	02	MSK 030C	84	85			Magnetfeldsensor: - Reed-Sensor	21	-	03
	03	MSM 031B	136	137	00	013)	- Hall-Sensor (PNP-Öffner) Magnetfeldsensor mit Stecker:	58	01	
1	27						Reed-SensorHall-Sensor (PNP-Öffner)	59		05
1,5	28	MSM 019B	134	135						
1	23	MSM 031B	136	137						
1,5	24	MISIMI OSTO	130	131						
1	21	MSK 030C	84	85						
1,5	22									

Schalteranbau

Nähere Informationen zu Schalteranbau und Schaltertyp siehe Kapitel "Schalteranbau".

¹⁾ Position der Schmierstellen beachten! Siehe Kapitel "Schmierung"


²⁾ Anbausatz auch ohne Motor lieferbar (bei Bestellung: für Motor "00" eintragen)

³⁾ Nur in Verbindung mit Anbauflansch (Tischteiloption 04) wählbar

^{4) &}quot;02" = Reibmomentmessung, "03" = Steigungsabweichung: "05" = Positioniergenauigkeit siehe Kapitel "Dokumentation".

VKK-050

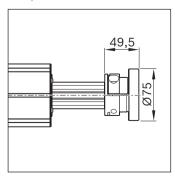
Maßbilder

L	S _{max} 1)	
	ohne Faltenbalg	mit Faltenbalg
(mm)	(mm)	(mm)
240	138	97
280	178	131
360	258	199
480	378	301

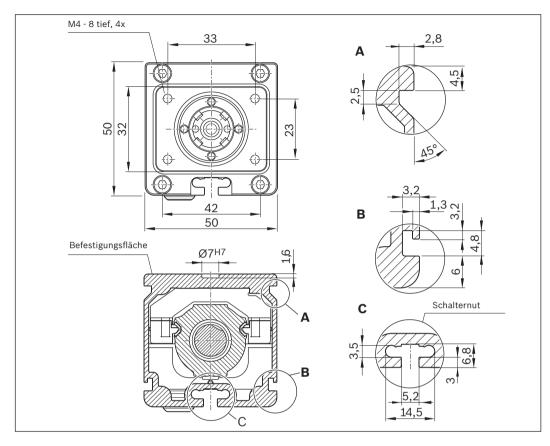
1) Überlauf berücksichtigen!

s_e = Überlauf s_{eff} = Effektiver Hub

s_{max} = Maximaler Verfahrweg

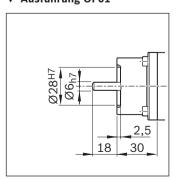

$$S_{eff} = S_{max} - S_{e}$$

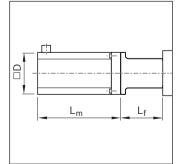
Maximaler Verfahrweg = effektiver Hub + $2 \cdot$ Überlauf Für einen sicheren Betrieb muss der Überlauf größer als der Bremsweg sein.


Als allgemeiner Richtwert für den Überlauf (Bremsweg) genügt in den meisten Fällen:

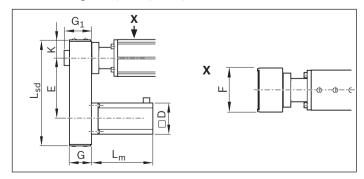
Überlauf = $2 \cdot Spindelsteigung P$ Beispiel: KGT 12 x 5 (d_0 x P)

▼ Option mit Anbauflansch


Nähere Informationen im Kapitel Anbauelemente.



Ausführung	Motor	Maße (m	nm)										
		D		E		G	G ₁	K	Lf		Lm		L_{sd}
			i = 1	i = 1,5						ohne Brem- se	mit Brem- se	i = 1	i = 1,5
RV01 bis	MSM 019B	42	76,5	76,5	48,0	27	29,0	27,5	-	92	122,0	139	139
RV04	MSM 031B	60	78,0	75,0	64,5	37	43,5	33,5	-	79	115,5	157	157
	MSK 030C	54	78,0	75,0	64,5	37	43,5	33,5	-	188	213,0	154	154
MF01	MSM 019B	42	_	-	_	-	_	_	44	92	122,0	-	_
	MSM 031B	60	_	-	_	-	-	_	50	79	115,5	-	_
	MSK 030C	54	_	_	_	-	_	_	50	188	213,0	-	_


▼ Ausführung OF01

▼ Ausführung MF01

▼ Ausführung RV01, RV02, RV03, RV04

VKK-070

Konfiguration und Bestellung

	zeichnung, Länge 0-NN-1, mm			Führung	Antrieb				Tischteil		
Ausfüh	Ausführung				pfen	KGT Gr	öße		Ohne Anbauflansch	Mit Anbauflansch	
			Spindelzapfen	N							
	OF01				Ø 9	01	02	03			
mit KGT ohne Motorflansch			OF01		Ø 9 PF- Nut	11	12	13	03	04	
mit KGT und Motorflansch	MF01		MF01	L = 280 mm 12 L = 320 mm 13 L = 400 mm 15 L = 520 mm	Ø9	01	02	03	03	04	
mit KGT und Riemenvorgelege	RV01 ¹⁾	RV02 RV04	RV01 bis RV04	18 L = 600 mm 20	Ø 9	01	02	03	03	04	

Bestellbeispiel: Siehe "Anfrage/Bestellung"

 $\begin{array}{lll} \text{KGT} & = & \text{Kugelgewindetrieb} \\ \text{d}_0 & = & \text{Nenndurchmesser} & \text{(mm)} \\ \text{P} & = & \text{Steigung} & \text{(mm)} \end{array}$

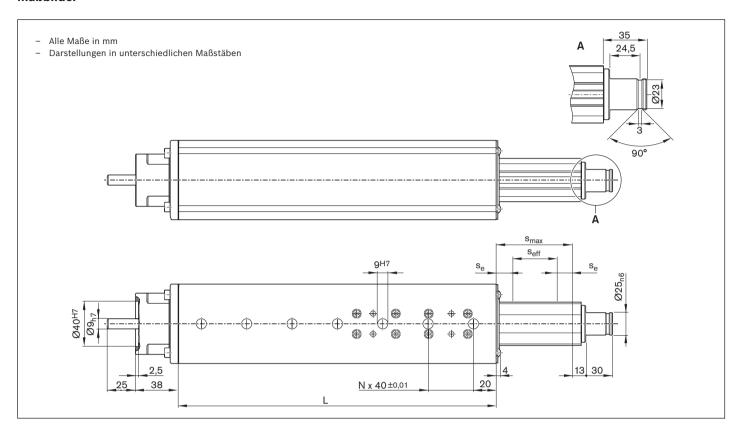
	Motoranbau					Abdeck	ung	Schaltsystem	Dokumentation		
	Übersetzung Anbausatz ²⁾ für Motor			ohne mit		ohne mit			Standard- Mess-protokoll protokoll ⁵⁾		
				Bre	mse	Falte	nbalg				
		00	-	0	0						
	1	01	MSM 031C	138	139						
		02	MSK 030C	84	85			Ohne Schalter Magnetfeldsensor:	00		02
		03	MSM 041B	140	141	00	013)	- Reed-Sensor - Hall-Sensor (PNP-Öffner)	21 22	01	03
		04	MSM 040C	116	117			Magnetfeldsensor mit Stecker: - Reed-Sensor	58		
	1	33	MSM 031C	138	139			– Hall-Sensor (PNP-Öffner)	59		05
	1,5	34	WISIWI USIC	130 139							
,	1	31	MSK 030C	84	85						
	1,5	32	WISIN 030C	04	00						
	1	37	MSM 041B	140 141							
	1,5	38	'MOIM 041D								
	1	35	MSK 040C	MSK 040C 86 87							
	1,5	36	10100								

Schalteranbau

Nähere Informationen zu Schalteranbau und Schaltertyp siehe Kapitel "Schalteranbau".

¹⁾ Position der Schmierstellen beachten! Siehe Kapitel "Schmierung"

²⁾ Anbausatz auch ohne Motor lieferbar (bei Bestellung: für Motor "00" eintragen)


³⁾ Nur in Verbindung mit Anbauflansch (Tischteiloption 04) wählbar

^{4) &}quot;02" = Reibmomentmessung,

[&]quot;03" = Steigungsabweichung: "05" = Positioniergenauigkeit siehe Kapitel "Dokumentation".

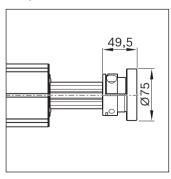
VKK-070

Maßbilder

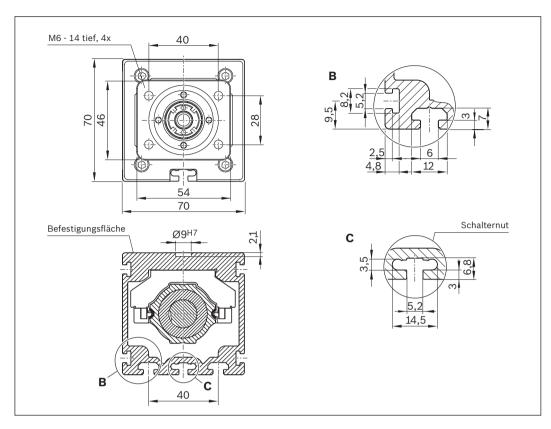
L	s _{max} 1)	
	ohne Faltenbalg	mit Faltenbalg
(mm)	(mm)	(mm)
280	132	95
320	172	129
400	252	197
520	372	299
600	452	367

1) Überlauf berücksichtigen!

se = Überlauf seff = Effektiver Hub s_{max} = Maximaler Verfahrweg

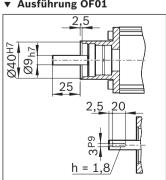

$$S_{eff} = S_{max} - S_{e}$$

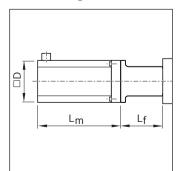
Maximaler Verfahrweg = effektiver Hub + $2 \cdot$ Überlauf Für einen sicheren Betrieb muss der Überlauf größer als der Bremsweg sein.


Als allgemeiner Richtwert für den Überlauf (Bremsweg) genügt in den meisten Fällen:

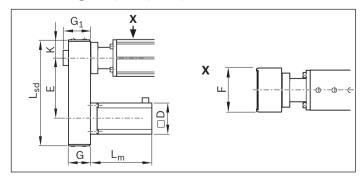
Überlauf = $2 \cdot Spindelsteigung P$ Beispiel: KGT 12 x 5 (d_0 x P)

▼ Option mit Anbauflansch


Nähere Informationen im Kapitel Anbauelemente.



Ausführung Motor Maße (mm)													
		D		E	F	G	G_1	K	L _f		L _m		L_{sd}
										ohne	mit		
			i = 1	i = 1,5						Bremse	Bremse	i = 1	i = 1,5
RV01 bis	MSM 031C	60	103,5	115	64,5	37	43,5	33,5	-	98,5	135,0	179	191
RV04	MSM 041B	80	122,0	122	88,0	51	57,0	45,5	-	112,0	149,0	220	220
	MSK 030C	54	103,5	115	64,5	37	43,5	33,5	-	188,0	213,0	179	191
	MSK 040C	82	122,0	122	88,0	51	57,0	45,5	_	185,5	215,5	220	220
MF01	MSM 031C	60	_	_	_	_		_	72,0	98,5	135,0	_	_
	MSM 041B	80	_	_	_	_		_	83,0	112,0	149,0	_	_
	MSK 030C	54	_	_	-	-		-	75,5	188,0	213,0	_	_
	MSK 040C	82	_	_	_	_		_	77,5	185,5	215,5	_	-


▼ Ausführung OF01

▼ Ausführung MF01

▼ Ausführung RV01, RV02, RV03, RV04

VKK-100

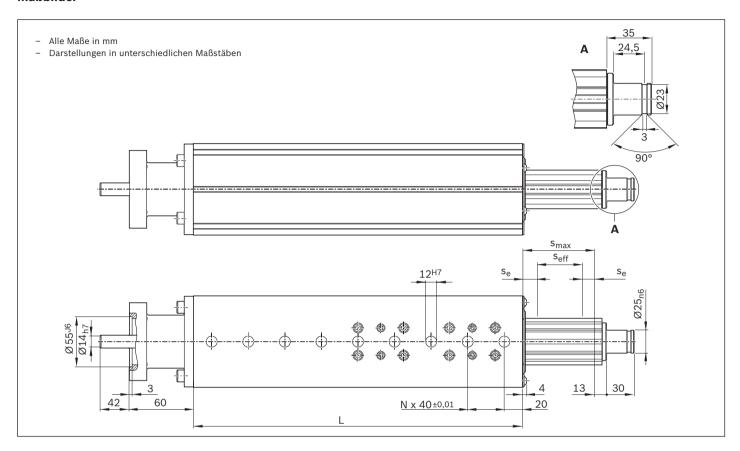
Konfiguration und Bestellung

Kurzbe VKK-10	ezeichnung, Länge 00-NN-1, mm	Führung	Antrieb				Tischteil				
			KGT Größe				Ohne Anbauflansch	Mit Anbauflansch			
Ausfül	nrung		Spindelzapfen	20x5	25x10	20x20	5	I			
lansch	OF01				Ø 14	01	02	03	- 03	04	
ohne Motorflansch			OF01	L = 360 mm	Ø 14 PF- Nut	11	12	13			
mit KGT und Motorflansch	MF01		MF01	12 L = 400 mm 13 L = 480 mm 15 L = 600 mm 18	Ø 14	01	02	03	03	04	
mit KGT und Riemenvorgelege	RV01 ¹) RV03	RV02	RV01 bis RV04	L = 680 mm 20	Ø 14	01	02	03	03	04	

Bestellbeispiel: Siehe "Anfrage/Bestellung"

 $\begin{array}{lll} \text{KGT} & = & \text{Kugelgewindetrieb} \\ \text{d}_0 & = & \text{Nenndurchmesser} & \text{(mm)} \\ \text{P} & = & \text{Steigung} & \text{(mm)} \end{array}$

Motoranbau			Motor		Abdeck	ung	Schaltsystem		Dokumentat	tion
Übersetzung i =	Anbausatz ²⁾	für Motor	ohne Bre	mit mse	ohne Falte	mit nbalg			Standard- protokoll	Mess- protokoll ⁵⁾
	00	-	C	00						
	03	MSM 041B	140	141			Ohne Schalter Magnetfeldsensor:	00		02
1							- Reed-Sensor	21		03
	05	MSK 050C	88	89	00	013)	- Hall-Sensor (PNP-Öffner) Magnetfeldsensor mit Stecker: - Reed-Sensor	58	01	05
1	27						– Hall-Sensor (PNP-Öffner)	59		
1,5	28	MSM 041B	140	141						
1	29	MOLOGO								
1,5	30	MSK 050C	88	89						


Schalteranbau

Nähere Informationen zu Schalteranbau und Schaltertyp siehe Kapitel "Schalteranbau".

- 1) Position der Schmierstellen beachten! Siehe Kapitel "Schmierung"
- 2) Anbausatz auch ohne Motor lieferbar (bei Bestellung: für Motor "00" eintragen)
- 3) Nur in Verbindung mit Anbauflansch (Tischteiloption 04) wählbar
- 4) "02" = Reibmomentmessung,
 - "03" = Steigungsabweichung:
 - "05" = Positioniergenauigkeit siehe Kapitel "Dokumentation".

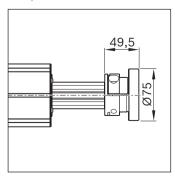
VKK-100

Maßbilder

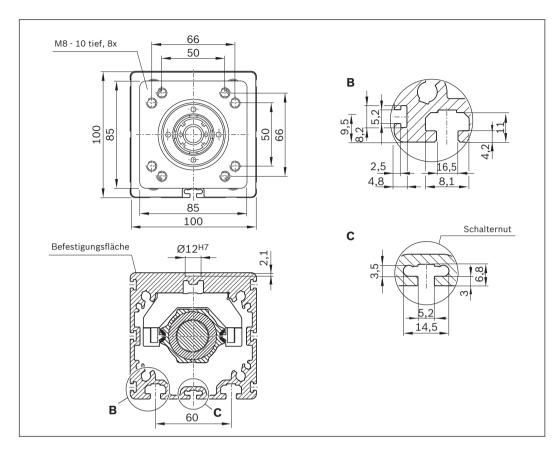
L	s _{max} 1)	
	ohne Faltenbalg	mit Faltenbalg
(mm)	(mm)	(mm)
360	156	119
400	197	154
480	276	224
600	396	330
680	476	400

¹⁾ Überlauf berücksichtigen!

s_e = Überlauf s_{eff} = Effektiver Hub s_{max} = Maximaler Verfahrweg

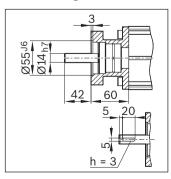

$$S_{eff} = S_{max} - S_{e}$$

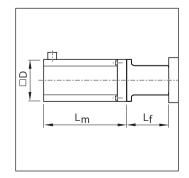
Maximaler Verfahrweg = effektiver Hub + $2 \cdot$ Überlauf Für einen sicheren Betrieb muss der Überlauf größer als der Bremsweg sein.


Als allgemeiner Richtwert für den Überlauf (Bremsweg) genügt in den meisten Fällen:

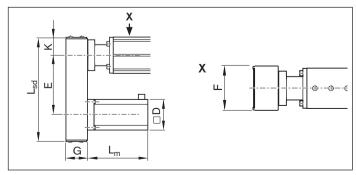
Überlauf = $2 \cdot Spindelsteigung P$ Beispiel: KGT 12 x 5 (d_0 x P)

▼ Option mit Anbauflansch


Nähere Informationen im Kapitel Anbauelemente.

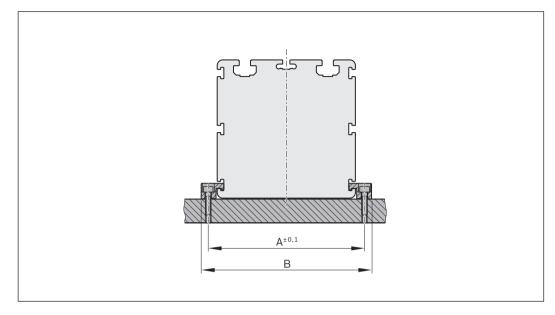


Ausführung	Motor	Maße (iße (mm)											
		D		E			G	K	L _f		L _m	L _s		
										ohne	mit			
			i = 1	i = 1,5	i = 2					Bremse	Bremse	i = 1	i = 1,5	i = 2
RV01 bis	MSM 041B	80	122	122	-	88	51	45,5	_	112	149	231	231	_
RV04	MSK 050C	98	154	_	154	116	66	57,0	-	203	233	280	_	280
MF01	MSM 041B	80	-	_	-	-	-	-	90	112	149	-	_	_
	MSK 050C	98	-	_	-	-	-	-	115	203	233	-	_	_


▼ Ausführung OF01

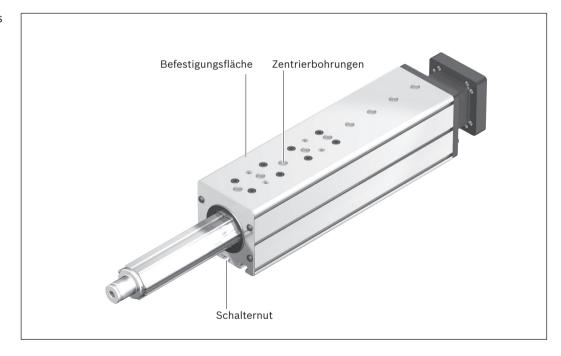
▼ Ausführung MF01

▼ Ausführung RV01, RV02, RV03, RV04


Befestigung

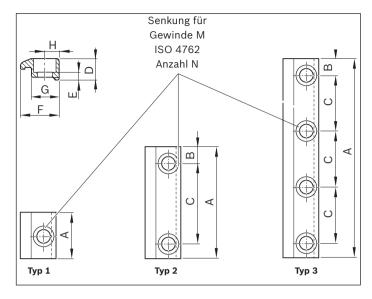
Befestigung mit Spannstücken

Die Befestigung erfolgt mit Spannstücken an den seitlichen Nuten.


Spannstücke

Größe	Maße (mm)					
	А	В				
VKK-050	62,5	75,5				
VKK-070	86,0	100,0				
VKK-100	116,0	130,0				

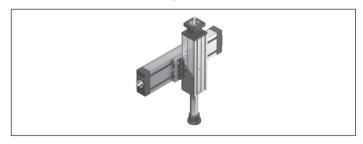
Befestigungsfläche


Die Anbindung/Montage des Vorschubmoduls darf ausschließlich an der Fläche mit den Zentrierbohrungen erfolgen.

Spannstücke

Empfohlene Anzahl an Spannstücken:

- Typ 1: 4 Stück pro Seite/pro 300 mm
- Typ 2: 2 Stück pro Seite/pro 300 mm
- Typ 3: 1 Stück pro Seite/pro 300 mm


Größe	für	Тур	Anzahl Bohrungen	Maße (ı	nm)							Materialnummer
			N	А	В	С	D	E	F	G	н	
VKK-050	M5	1	1	22	_	_	10,0	4,8	15,1	12,2	6,5	R1419 010 01
		2	2	57	8,5	40						R1419 010 43
		3	4	77	8,5	20						R1419 010 44
VKK-070	M5	3	4	107	8,5	30	11,5	4,8	19,3	14	7,0	R0375 410 02
		3	4	77	8,5	20						R0375 410 26
VKK-070	M6	1	1	25	_	_	11,5	5,3	19,3	14	7,0	R0375 510 00
VKK-100		3	4	142	11	40						R0375 510 02
		2	2	72	11	50						R0375 510 33
		2	2	62	11	40						R0375 510 34
		2	2	47	8,5	30						R0375 510 23

Befestigung an vorhandene Module

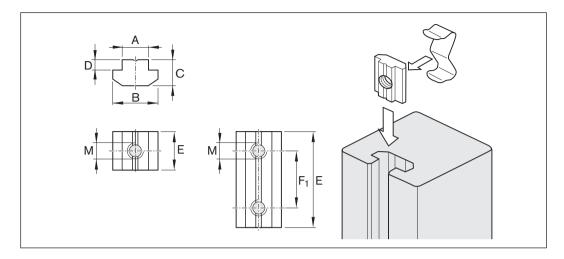
- ► Keine Zwischenplatten erforderlich
- ► Formschluss über Zentrierringe (EasyHandling-kompatibel)
- ► Einfache Montage mit Spannstücken

Detallierte Informationen siehe Katalog "Verbindungstechnik für Linearsysteme"

▼ Vorschubmodul VKK an Compactmodul CKK

Befestigungszubehör

Zentrierring



Der Zentrierring dient als Positionierhilfe und Formschluss bei der Befestigung des VKK. Mit ihm wird eine formschlüssige Verbindung mit guter Reproduzierbarkeit geschaffen. Werkstoff: Stahl (nichtrostend).

Ø Größe	Maße (n	Maße (mm)												
, ,	Α	В	С	D	Е	ØF	H1	H2						
(mm)	k6	k6	±0,1	-0,2	+0,2		+0,2	+0,2						
7	7	_	5,5	3,0	_	1,6	1,6	-	R0396 605 43					
9	9	_	6,6	4,0	_	2,0	2,1	_	R0396 605 44					
12	12	_	9,0	4,0	_	2,0	2,1	_	R0396 605 45					
7 - 5	7	5	3,4	3,0	1,5	1,6	1,6	1,6	R0396 605 47					
9 - 5	9	5	3,4	3,5	1,5	1,6	2,1	1,6	R0396 605 48					
9 - 7	9	7	5,5	3,5	1,5	1,6	2,1	1,6	R0396 605 49					
12 - 9	12	9	6,6	4,0	2,0	2,0	2,1	2,1	R0396 605 50					

Nutensteine und Federn

Zur Befestigung von Anbauten an T-Nuten.

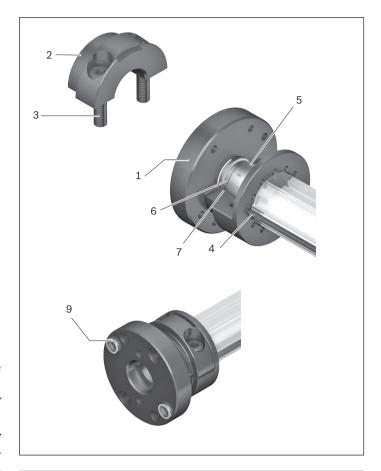
Größe	für	Maße	(mm)					Materialnummer	Materialnummer			
	Gewinde	Α	A B		D E		F1	Nutenstein	Feder			
VKK-050	-	_	-	-	-	-	_	-	-			
VKK-070	M4	6	11,5	4	1	12	_	R3447 014 01	R3412 010 02			
	M4	1				45	30	R0391 710 09	-			
	M5					12	_	R3447 015 01	R3412 010 02			
VKK-100	M5	8	16,0	6	2	16	-	R3447 017 01	R3412 010 02			
	M5	1				16	_	R3447 018 01	R3412 010 02			
	M6	1				16	_	R3447 019 01	R3412 010 02			
	M6					50	36	R0391 710 08	-			

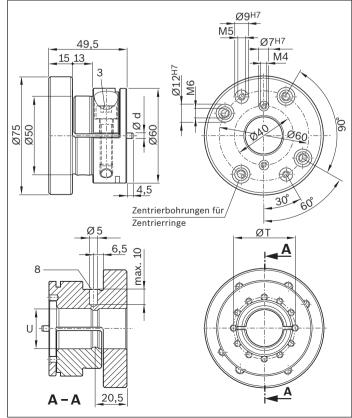
Anbauelemente

Anbauflansch

Für Anbau von Kundenanbauten, Greifern und Drehmodulen

Baugruppe besteht aus:


- 1 Anbauflansch
- 2 Halbschale (Klemmung)
- 3 Zylinderschrauben (2x ISO 4762)
- 4 Positionierstift*)
- **5** Aufnahmezapfen
- 6 Nut für Zentrierung
- **7** Zentrierung
- 8 Zylinderstift mit Innengewinde*)
- **9** Zentrierringe*)
- *) im Lieferumfang enthalten


Hinweis zur Bestellung

Der Anbauflansch kann entweder über die Tischteiloption 04 (Tischteil mit Anbauflansch) gewählt, oder über folgende Materialnummern bestellt werden.

Größe	Anbauflansch
	Materialnummer
VKK-050	R1419 000 35
VKK-070	R1419 000 36
VKK-100	R1419 000 37

Größe	(3) (3) (3) (3)	12.9	Ø U ^{H7}	Ø d _{m6}	ØТ
		(Nm)	(mm)	(mm)	(mm)
VKK-050	M6x25	14	20	3,5	29,0
VKK-070	M8x30	35	25	3,5	38,7
VKK-100	M8x30		25	5,5	51,5

Faltenbalgabdeckung

Schutz von Pinole und Führung vor Verschmutzung

Faltenbalg mit beidseitig polyurethanbeschichtetem Polyestergewebe, verschweißte Ausführung. Öl- und feuchtigkeitsbeständig.

Baugruppe besteht aus:

- 1 Halteblech (2x)
- 2 Befestigungsflansch unten
- 3 Polyurethanfaltenbalg
- 4 Klemmblech aussen (8x)
- 5 Klemmblech innen (2x)
- 6 Befestigungsflansch oben
- 7 Befestigungsschrauben (22x)
- 8 Anbauflansch

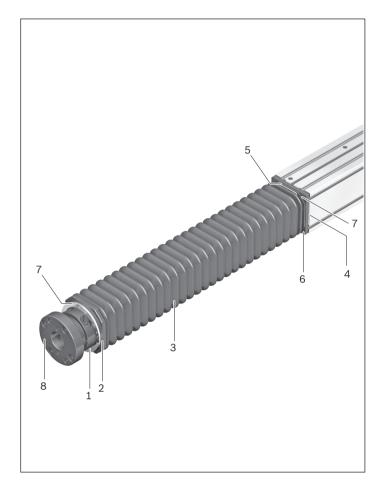
Hinweis zur Bestellung

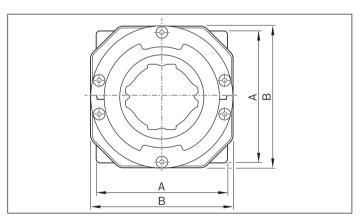
Der Faltenbalg wird über die Option Abdeckung 01 gewählt und ist nur in Verbindung mit dem Anbauflansch (Tischteiloption 04) wählbar.

Montagehinweise

Für den Anbau des Faltenbalgs ist der Anbauflansch erforderlich.

Hinweis

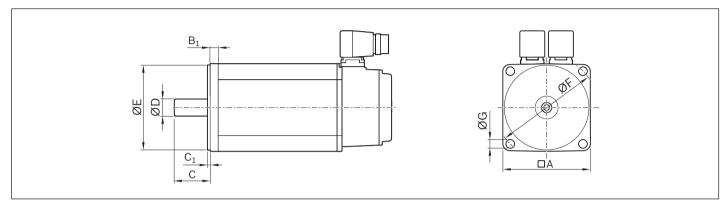

Wird die Faltenbalgabdeckung bzw. der Anbauflansch gelöst, müssen die Befestigungsschrauben nach der Montage wieder gesichert werden!

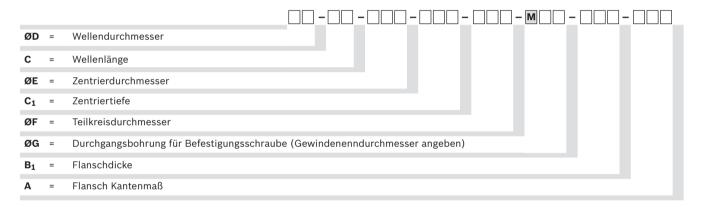

(Zum Beispiel mit flüssiger Schraubensicherung mittelfest.)

Größe	Maße (mm)	
	A	В
VKK-050	50	75
VKK-070	70	75
VKK-100	100	100

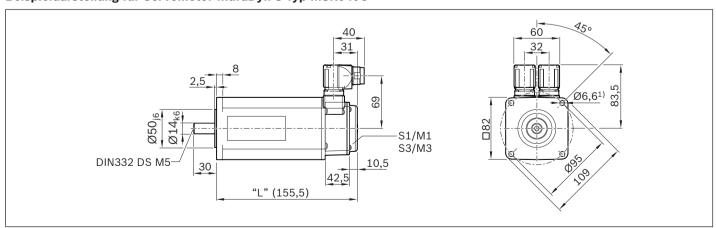
Energieführungsketten

Detaillierte Informationen siehe Katalog "Verbindungstechnik für Linearsysteme"



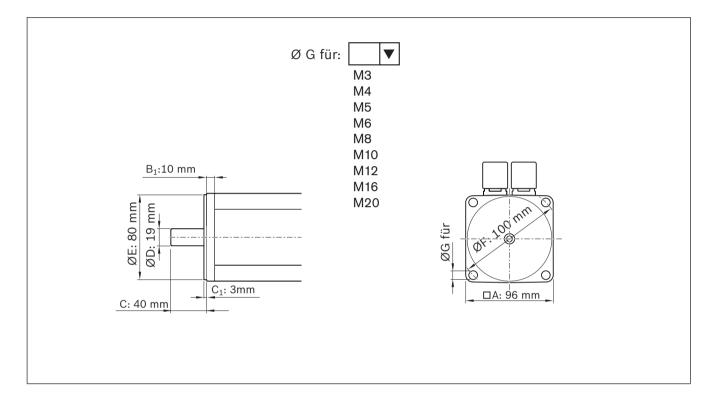

Anbausätze für Motoren nach Kundenwunsch

Der Motoranbau bei Linearsystemen mit Kugelgewindetrieb besteht wahlweise aus einem Anbausatz mit Flansch und Kupplung (MF) oder einem Riemenvorgelege (RV).


Die verfügbaren Kombinationen werden in den Auswahltabellen "Konfiguration und Bestellung" der jeweiligen Baugröße dargestellt. Neben Motor-Anbausätzen für Rexroth Motoren besteht zusätzlich die Möglichkeit, Anbausätze für Motoren nach Kundenwunsch zu bestellen. Zur Festlegung des passenden Anbausatzes ist die Anschlussgeometrie des Motors ausschlaggebend. Die erforderlichen Merkmale zur eindeutigen Bestimmung der Motorgeometrie sind nachfolgend dargestellt.

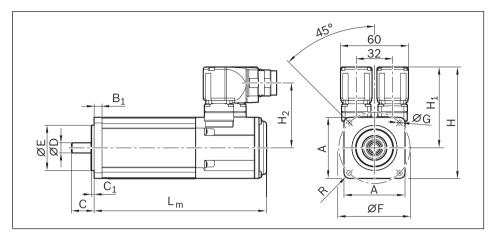
Die abgefragten Maße ergeben einen eindeutigen "Motorgeometrie-Code":

Beispieldarstellung für Servomotor IndraDyn S Typ MSK040C



1 4 - 3 0 - 0 5 0 - 2 . 5 - 0 9 5 - M 0 6 - 0 0 8 - 0 8 2

1 Aus der Durchgangsbohrung Ø 6,6 mm ergibt sich für den Motorgeometriecode die Typbezeichnung M06 (Gewinde-Nenndurchmesser Befestigungsschraube M6).


Motoranbausätze für Motoren nach Kundenwunsch können mit dem Online-Konfigurator im Rexroth eShop konfiguriert werden. Voraussetzung hierfür ist die Auswahl der Option "Anbausatz für Motor nach Kundenwunsch".

Zur Eingabe der Motorgeometrie steht ein Erfassungsdialog zur Verfügung. Die Maße können über Direkteingabe oder pull-down Menü eingegeben werden.

IndraDyn S - Servomotoren MSK

Motordarstellung schematisch

Maße

Motor	Maße (mn	Taße (mm)													
	Α	С	ØD	ØE	ØF	ØG	н		L _m						
			k6	j6				ohne Haltebremse	mit Haltebremse						
MSK 030C-0900	54	20	9	40	63	4,5	98,5	180,0	213,0						
MSK 040C-0600	82	30	14	50	95	6,6	124,5	185,5	215,5						
MSK 050C-0600	98	40	19	95	115	9,0	134,5	203,0	233,0						

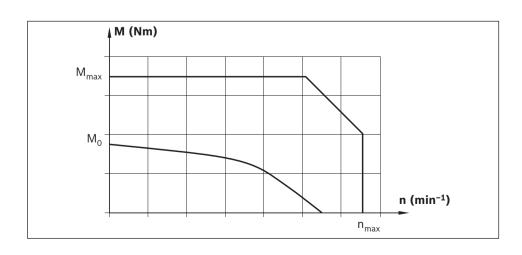
Motordaten

Motor	n _{max}	M ₀	M _{max}	M _{br}	J _m	J _{br}	mm	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSK 030C-0900	9 000	0,8	4,0	1	0,000030	0,000007	1,9	0,2
MSK 040C-0600	7 500	2,7	8,1	4	0,000140	0,000023	3,6	0,3
MSK 050C-0600	6 000	5,0	15,0	5	0,000330	0,000107	5,4	0,7

Massenträgheitsmoment der HaltebremseMassenträgheitsmoment des Motors

= Länge des Motors

J_m L_m M₀ Stillstandsdrehmoment = Haltemoment der Haltebremse in ausgeschaltetem Zustand


Maximal mögliches Motordrehmoment M_{max}

 m_{br} = Masse der Haltebremse

= Maximaldrehzahl

Motorkennlinie

(Schematisch)

Optionsnummer ¹⁾	Motor	Materialnummer	Ausführu	ıng	Typenschlüssel
			Haltebre	mse	
			Ohne	Mit	
84	MSK 030C-0900	R911308683	X		MSK030C-0900-NN-M1-UG0-NNNN
85		R911308684		Х	MSK030C-0900-NN-M1-UG1-NNNN
86	MSK 040C-0600	R911306060	Х		MSK040C-0600-NN-M1-UG0-NNNN
87	7	R911306061		Х	MSK040C-0600-NN-M1-UG1-NNNN
88	MSK 050C-0600	R911298354	X		MSK050C-0600-NN-M1-UG0-NNNN
89		R911298355		Х	MSK050C-0600-NN-M1-UG1-NNNN

¹⁾ aus Tabelle "Komponenten und Bestellung"

Ausführung:

- ► Glatte Welle mit Wellendichtung
- ► Multiturn-Absolutgeber M1 (Hiperface)
- ► Kühlung: natürliche Konvektion

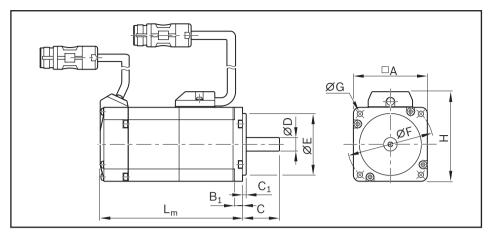
- ► Schutzart IP65 (Gehäuse)
- ▶ Mit und ohne Haltebremse

Hinweis

Die Motoren sind komplett mit Regelgeräten und Steuerungen lieferbar. Weitere Motortypen und nähere Informationen zu Motoren, Regelgeräten und Steuerungen finden Sie in den Rexroth Katalogen zur Antriebstechnik.

Rexroth Medienverzeichnis

Kategorien		
▶ Elektrische Antriebe und	▶ Allgemeines	▶ IndraDrive
Steuerungen	► Antriebstechnik	▶ IndraDrive Cs
► Industriehydraulik	► Automatisierungssysteme	▶ IndraDrive Mi
► Mobilhydraulik	▶ Einpresssysteme	▶ IndraDrive ML
▶ Linear- und Montagetechnik	▶ Engineering	▶ IndraDrive Fc
▶ Systeme	▶ Schraubsysteme	▶ Frequency Converter EFC
► Training	▶ Steuerungskomponenten	3600
► Gesamtunternehmen	▶ Widerstandsschweißen	▶ Frequency Converter EFC
▶ Branchen		3610/5610


Empfohlene Motor/Regler Kombinationen

Motor	Regler
MSK 030C-0900	HCS 01.1E-W0005
MSK 030C-0900	HCS 01.1E-W0008
MSK 040C-0600	
MSK 040C-0600	HCS 01.1E-W0018
MSK 050C-0600	
MSK 050C-0600	HCS 01.1E-W0028
MSK 060C-0600	
MSK 060C-0600	HCS 01.1E-W0054
MSK 076C-0450	

IndraDyn S - Servomotoren MSM

Motordarstellung schematisch

Maße

Motor	Maße (m	m)									
	Α	B ₁	С	C ₁	ØD	ØE	ØF	ØG	н		L _m
					h6	h7				ohne Haltebremse	mit Haltebremse
MSM 019B-0300	38	6,0	25	3	8	30	45	3,4	51	92,0	122,0
MSM 031B-0300	60	6,5	30	3	11	50	70	4,5	73	79,0	115,5
MSM 031C-0300	60	6,5	30	3	14	50	70	4,5	73	98,5	135,0
MSM 041B-0300	80	8,0	35	3	19	70	90	6,0	93	112,0	149,0

Motordaten

Motor	n _{max}	M ₀	M _{max}	M _{br}	J _m	J _{br}	mm	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSM 019B-0300	5 000	0,32	0,95	0,29	0,0000051	0,0000002	0,47	0,21
MSM 031B-0300	5 000	0,64	1,91	1,27	0,0000140	0,0000018	0,82	0,48
MSM 031C-0300	5 000	1,30	3,80	1,27	0,0000260	0,0000018	1,20	0,50
MSM 041B-0300	4 500	2,40	7,10	2,45	0,0000870	0,0000075	2,30	0,80

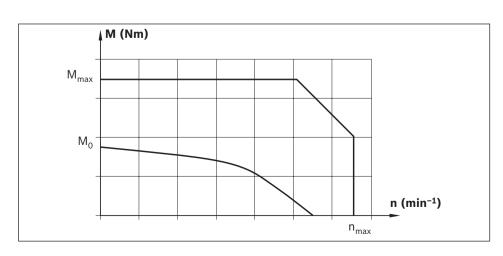
J_{br} J_m Massenträgheitsmoment der Haltebremse

Massenträgheitsmoment des Motors

= Länge des Motors

Stillstandsdrehmoment

= Haltemoment der Haltebremse in ausgeschaltetem Zustand


 M_{max} = Maximal mögliches Motordrehmoment

= Masse der Haltebremse

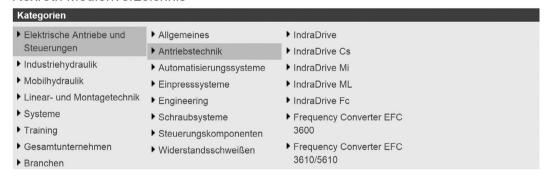
= Maximaldrehzahl

Motorkennlinie

(Schematisch)

Optionsnummer ¹⁾	Motor	Materialnummer	Ausführung		Typenschlüssel
			Haltebremse Ohne	Mit	
134	MSM019B-0300	R911344211	Х		MSM 019B-0300-NN-M5-MH0
135		R911344212		Х	MSM 019B-0300-NN-M5-MH1
136	MSM 031B-0300	R911344213	Х		MSM 031B-0300-NN-M5-MH0
137		R911344214		Х	MSM 031B-0300-NN-M5-MH1
138	MSM 031C-0300	R911344215	Х		MSM 031C-0300-NN-M5-MH0
139		R911344216		Х	MSM 031C-0300-NN-M5-MH1
140	MSM 041B-0300	R911344217	Х		MSM 041B-0300-NN-M5-MH0
141		R911344218		Х	MSM 041B-0300-NN-M5-MH1

¹⁾ aus Tabelle "Konfiguration und Bestellung"


Ausführung:

- Glatte Welle ohne Wellendichtung
- ▶ Multiturn-Absolutgeber M5 (20 Bit, Absolutgeberfunktionalität nur mit Pufferbatterie möglich)
- ► Kühlung: natürliche Konvektion
- Schutzart IP54 (Welle IP40)
- ▶ Mit und ohne Haltebremse
- ► Metall-Rundstecker M17

Hinweis

Die Motoren sind komplett mit Regelgeräten und Steuerungen lieferbar. Weitere Motortypen und nähere Informationen zu Motoren, Regelgeräten und Steuerungen finden Sie in den Rexroth Katalogen zur Antriebstechnik.

Rexroth Medienverzeichnis

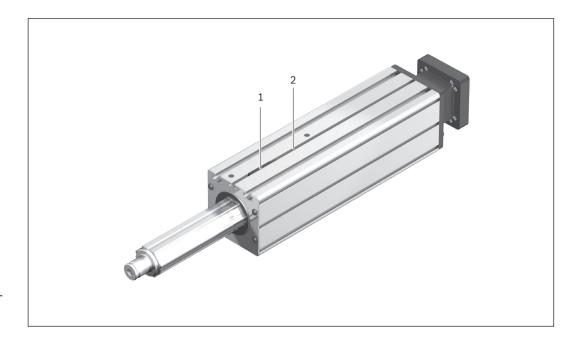
Empfohlene Motor-Regler-Kombination

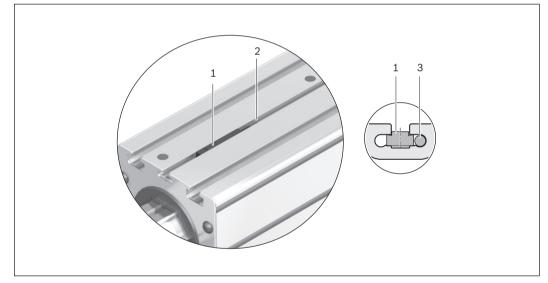
Motor	Regler
MSM 019A-0300	HCS 01.1E-W0003
MSM 019B-0300	
MSM 031B-0300	HCS 01.1E-W0006
MSM 031C-0300	HCS 01.1E-W0009
MSM 041B-0300	HCS 01.1E-W0013

Schalteranbau

- **1** Schalter (Magnetfeldsensor)
- 2 Schalternut
- **3** Kabel

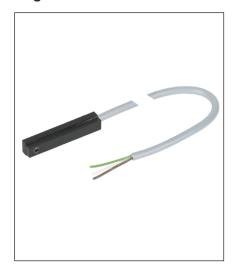
Der Schaltgeber ist ein Magnet, der in der Pinole integriert ist.

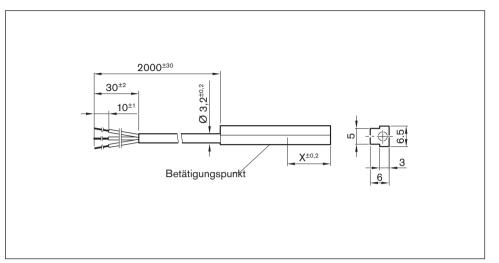

Hinweis

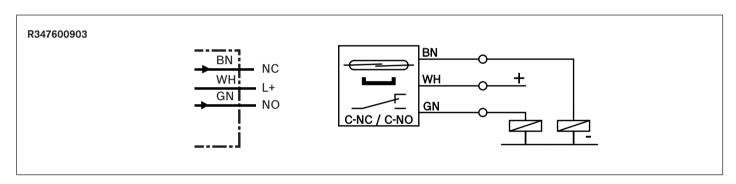

tung.

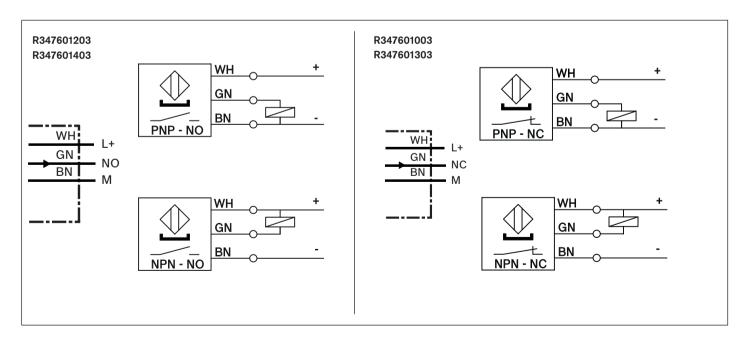
Bei Kurzhub - Länge der Schalter beachten!

Montagehinweise


Die Magnetfeldsensoren (MFS) werden in die Schalternut geschoben und mit Gewindestiften fixiert. Die Kabel der MFS werden seitlich in der Schalternut geführt (3).
Genaue Hinweise zur Schaltposition siehe Anlei-






Sensoren

Magnetischer Sensor mit freiem Leitungsende

Materialnummer R347600903

Verwendung	Endschalter
Materialnummer	R347600903
Bezeichnung	R12212
Funktionsprinzip	magnetisch
Betriebsspannung	max. 30 V DC
Laststrom	500 mA
Schaltfunktion	REED/ Wechslerkontakt (NC: C+NC, NO: C+NO)
Betätigungspunkt (Maß "X")	9 mm

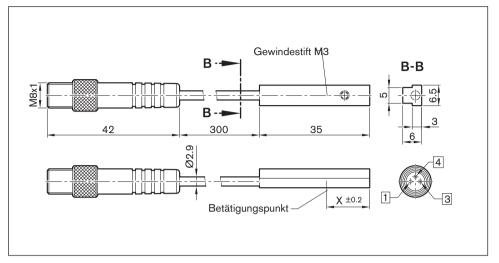
Materialnummern R347601003 / R347601203 / R347601403 / R347601303

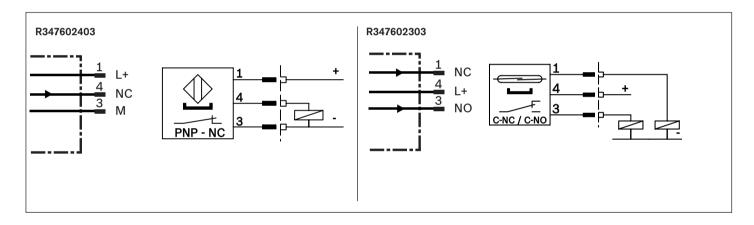
Verwendung	Endschalter	Referenzschalter	Endschalter	Referenzschalter			
Materialnummer	R347601003	R347601203	R347601303	R347601403			
Bezeichnung	H14118	H15637	H15638	H15080			
Funktionsprinzip		magnetisch					
Betriebsspannung		3.8 - 30 V DC					
Laststrom		≤ 20) mA				
Schaltfunktion	Hall	Hall	Hall	Hall			
	PNP/Öffner (NC)	PNP/Schließer (NO)	NPN/Öffner (NC)	NPN/Schließer (NO)			
Betätigungspunkt Maß "X"		13,65 mm					

Technische Daten für R347600903 / R347601003 / R347601203 / R347601403 / R347601303

Anschlussart	Leitung 2,0 m, 3-polig	
Anschlussenden verzinnt	V	
Funktionsanzeige	-	
Kurzschlussschutz	-	
Verpolungsschutz	-	
Einschaltimpulsunterdrückung	_	
Schaltfrequenz	2,5 kHz	
Pulsverlängerung (Off delay)	_	
Max. zul. Anfahrgeschwindigkeit	2 m/s	
Schleppkettentauglich*	_	
Torsionstauglich*	_	
Schweißfunkenbeständig*	_	
Leitungsquerschnitt*	3x0,14 mm ²	
Kabeldurchmesser D	3,2 ±0,20 mm	
Biegeradius statisch*	_	
Biegeradius dynamisch*	_	
Biegezyklen*	_	
Max. zul. Verfahrgeschwindigkeit*	_	
Max. zul. Beschleunigung*	_	
Umgebungstemperatur	−40 °C bis +85 °C	
Schutzart	IP66	
MTTFd (nach EN ISO 13849-1)	_	
Zertifizierungen und	_	
Zulassungen**		

^{*)} Technische Daten nur für die angegossene Anschlussleitung am Sensor.


Noch mehr Performance, z.B. für den Einsatz in einer Energiekette, bieten die angebotenen Verlängerungsleitungen (siehe folgende Seiten).

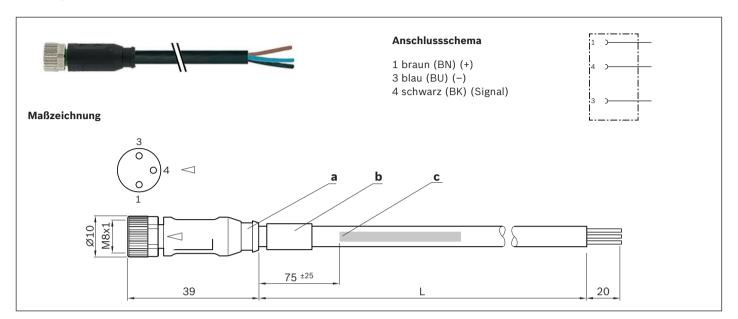

^{**)} Für diese Produkte ist kein Certifikat zur Einführung in den chinesischen Markt erforderlich.

Sensoren

Magnetischer Sensor mit Stecker M8x1

Materialnummern / Technische Daten

Verwendung	Endschalter	Endschalter			
Materialnummer	R347602403	R347602303			
Bezeichnung	H10706	R10705			
Funktionsprinzip	magnetisch				
Betriebsspannung	3,8 - 30 V DC	30 V DC			
Laststrom	≤ 20 mA	500 mA			
Schaltfunktion	Hall PNP/Öffner (NC)	REED / einpoliger Wechsler (NC: C+NC, NO: C+NO)			
Betätigungspunkt Maß "X"	13,65 mm	9 mm			
Anschlussart	Leitung 0,3 m und Stecker M8	x1, 3-polig mit Rändelverschraubung			
Funktionsanzeige		_			
Kurzschlussschutz		_			
Verpolungsschutz		_			
Einschaltimpulsunterdrückung	_				
Schaltfrequenz	2,5 kHz				
Pulsverlängerung (Off delay)	-				
Max. zul. Anfahrgeschwindigkeit	2 m/s				
Schleppkettentauglich*	-				
Torsionstauglich*	_				
Schweißfunkenbeständig*		_			
Leitungsquerschnitt*	3x0	0,14 mm ²			
Kabeldurchmesser D*	3,2	±0,20 mm			
Biegeradius statisch*		_			
Biegeradius dynamisch*		_			
Biegezyklen*		_			
Max. zul. Verfahrgeschwindigkeit*		_			
Max. zul. Beschleunigung*	_				
Umgebungstemperatur	-40 °C bis +85 °C				
Schutzart	IP66				
MTTFd (nach EN ISO 13849-1)	_				
Zertifizierungen und Zulassungen**		-			

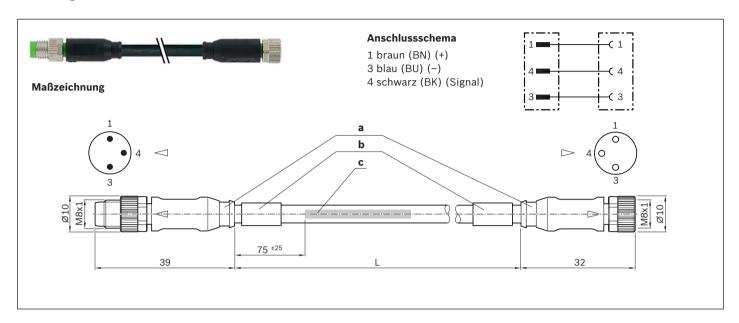

^{*)} Technische Daten nur für die angegossene Anschlussleitung (0,3 m) am magnetischen Sensor.

Noch mehr Performance, z.B. für den Einsatz in einer Energiekette, bieten die angebotenen Verlängerungsleitungen (siehe folgende Seiten).

^{**)} Für diese Produkte ist kein Certifikat zur Einführung in den chinesischen Markt erforderlich.

Verlängerungen

Einseitig konfektioniert



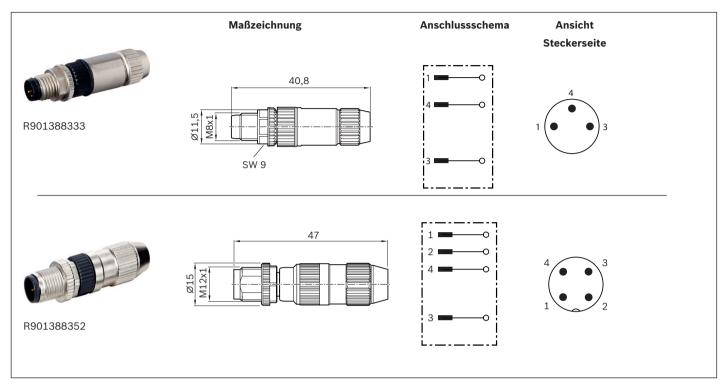
Materialnummern

Verwendung		Verlängerungsleitung				
Materialnummer	R911344602	R911344619	R911344620			
Bezeichnung	7000-08041-6500500	7000-08041-6501000	7000-08041-6501500			
Länge (L)	5,0 m	10,0 m	15,0 m			
1. Anschlussart		Buchse gerade, M8 x 1, 3-polig				
2. Anschlussart		freies Leitungsende				

- a) Kontur für Wellschlauch Innendurchmesser 6,5 mm
- **b)** Kabeltülle
- c) Kabelaufdruck laut Bedruckungsvorschrift

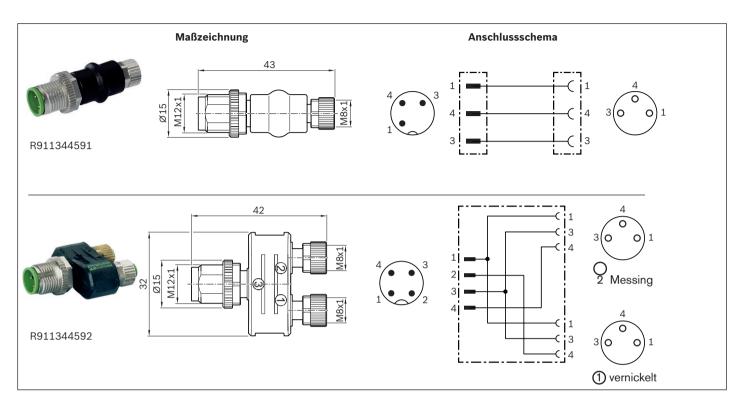
Beidseitig konfektioniert

Materialnummern


Verwendung	Verlängerungsleitung				
Materialnummer	R911344621	R911344622	R911344623	R911344624	R911344625
Bezeichnung	7000-88001-6500050	7000-88001-6500100	7000-88001-6500200	7000-88001-6500500	7000-88001-6501000
Länge (L)	0,5 m	1,0 m	2,0 m	5,0 m	10,0 m
1. Anschlussart	Buchse gerade, M8x1, 3-polig				
2. Anschlussart	Stecker gerade, M8x1, 3-polig				

Technische Daten für ein- und beidseitig konfektionierte Verlängerungen

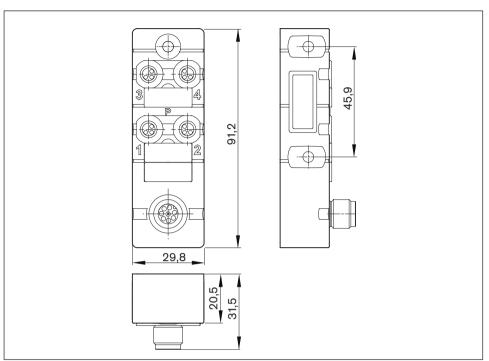
Funktionsanzeige	-		
Betriebsspannungsanzeige	-		
Betriebsspannung	10 - 30 V DC		
Kabelart	PUR schwarz		
Schleppkettentauglich	✓		
Torsionstauglich	✓		
Schweißfunkenbeständig	✓		
Leitungsquerschnitt	3x0,25 mm ²		
Kabeldurchmesser D	4,1 ±0,2 mm		
Biegeradius statisch	≥ 5xD		
Biegeradius dynamisch	≥ 10xD		
Biegezyklen	> 10 Mio.		
Max. zul. Verfahrgeschwindigkeit	3,3 m/s - bei 5 m Verfahrweg (typ.) bis 5 m/s - bei 0,9 m Verfahrweg		
Max. zul. Beschleunigung	≤ 30 m/s²		
Umgebungstemperatur fest verl.	-40 °C bis +85 °C		
Umgebungstemperatur flexibel verl.	−25 °C bis +85 °C		
Schutzart	IP68		
Zertifizierungen und	CE CULUS (PC ROHS		
Zulassungen	LISTED CUIS ROHS		

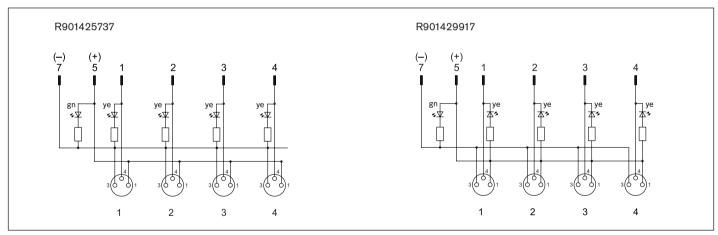

- a) Kontur für Wellschlauch Innendurchmesser 6,5 mm
- **b)** Kabeltülle
- c) Kabelaufdruck laut Bedruckungsvorschrift

Stecker

Verwendung	Stecker,	einzeln	
verwendung	Stecker, emzem		
Materialnummer	R901388333 R90138835		
Bezeichnung	7000-08331-0000000	7000-12491-0000000	
Ausführung	gera	de	
Betriebsstrom je Kontakt	max.	4 A	
Betriebsspannung	max. 32 V AC/DC		
Anschlussart	Stecker gerade, M8x1, 3-polig,	Stecker gerade, M12x1, 4-polig,	
	Schneidklemmtechnik,	Schneidklemmtechnik,	
	Schraubgewinde selbstsichernd	Schraubgewinde selbstsichernd	
Funktionsanzeige	-		
Betriebsspannungsanzeige	-		
Anschlussquerschnitt	0.14 0.34 mm ²		
Umgebungstemperatur	−25 °C bis +85 °C		
Schutzart	IP67 (gesteckt & verschraubt)		
Zertifizierungen und	5 1° 6	2 4	
Zulassungen	c Thus (Po	BoHS	

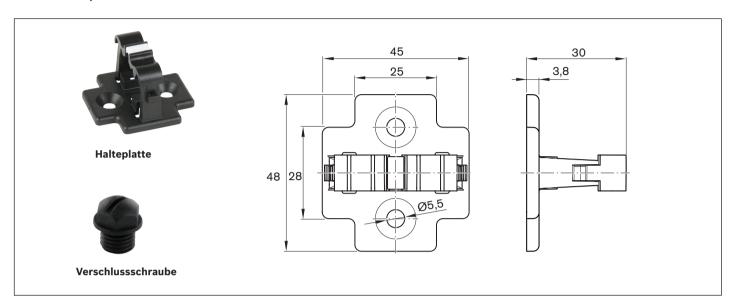
Adapter




Materialnummern / Technische Daten

materialiani i recinioni baten				
Verwendung	Adapter Adapter oder Verteiler			
Materialnummer	R911344591	R911344592		
Bezeichnung	7000-42201-0000000	7000-41211-0000000		
Ausführung	gerade für 1Sensor	gerade, für 1 - 2 Sensoren		
Betriebsstrom je Kontakt	max	. 4 A		
Betriebsspannung	max. 32 '	V AC/DC		
1. Anschlussart	Buchse gerade, M8x1, 3-polig Schraubgewinde selbstsichernd	2 X Buchse gerade, M8x1, 3-polig Schraubgewinde selbstsichernd		
2. Anschlussart	Stecker gerade, M12x1, 3-polig, Stecker gerade, M12x1, 4-Schraubgewinde selbstsichernd Schraubgewinde selbstsic			
Funktionsanzeige	-	-		
Betriebsspannungsanzeige	-	-		
Anschlussquerschnitt	-	-		
Umgebungstemperatur	−25 °C bis +85 °C			
Schutzart	IP67 (gesteckt & verschraubt)			
Zertifizierungen und Zulassungen	RoHS	CULISTED US PCF ROHS		
	1			

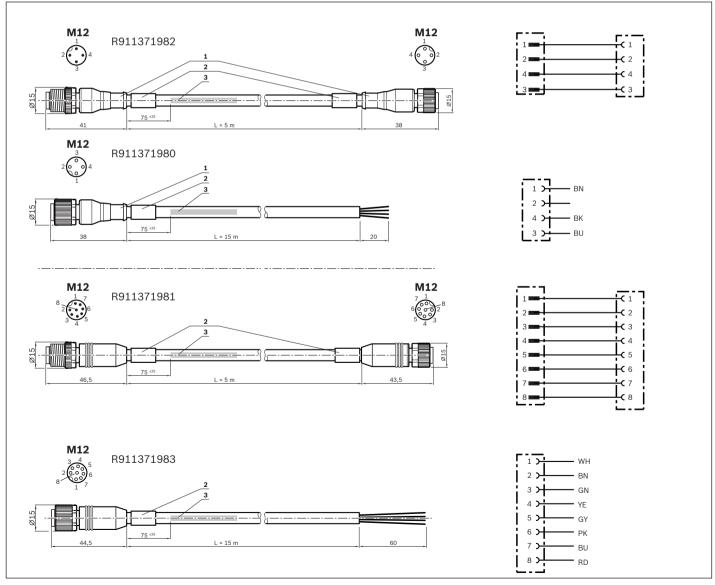
Verteiler passiv



Materialnummern/ Technische Daten

Verwendung	Verteiler passiv		
Materialnummer	R901425737	R901429917	R911344592
Bezeichnung	8000-84070-0000000	8000-84071-0000000	
Ausführung	gerade, für 1 - 4 Sensoren		
Betriebsstrom je Kontakt	max. 2 A		
Betriebsspannung	24 \	V DC	
Schaltlogik	PNP NPN		
1.Anschlusart	4x Buchse gerade, M8x1, 3-polig, Schraubgewinde selbstsichernd		
2.Anschlusart	Stecker gerade, M12x1, 8-polig, Schraubgewinde selbstsichernd		Techische Daten und Maßzeichnung siehe Adapter
Funktionsanzeige	✓		
Betriebsspannungsanzeige	√ Nuap		Adaptei
Anschlussquerschnitt	-		
Umgebungstemperatur	-20° bis +70°C		
Schutzart	IP67 (gesteckt & verschraubt)		
Zertifizierungen und Zulassungen	CUL US P	RoHS	

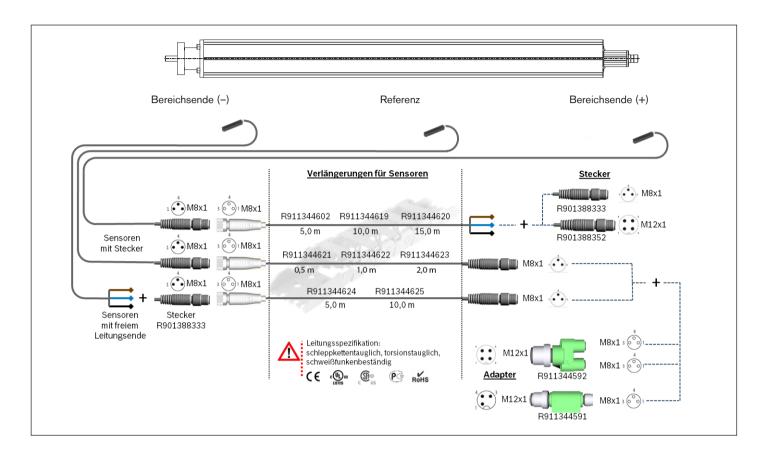
Zubehör für passiven Verteiler

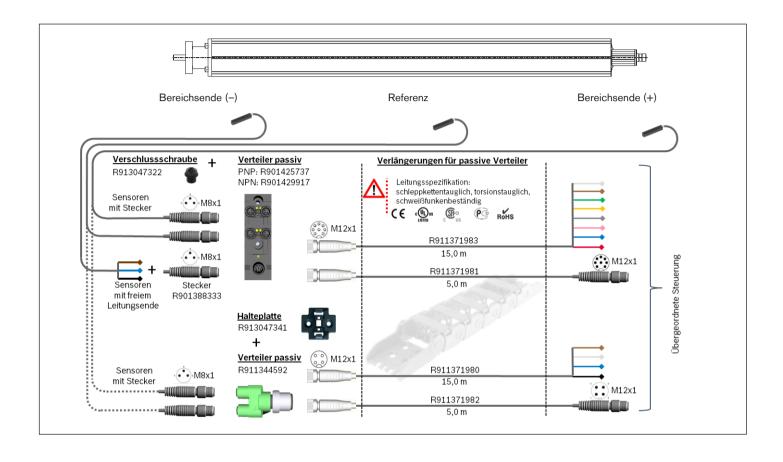


Materialnummern/ Technische Daten

Verwendung	Für passiven Verteiler R911344592	Für passive Verteiler R901425737/ R901429917	
Halteplatte	R913047341	_	
Bezeichnung	7000-99061-0000000	_	
Verpackungseinheit	1 Stück	_	
Verschlussschraube	-	R913047322	
Bezeichnung	-	3858627	
Verpackungseinheit	-	10 Stück	

Verlängerungen für passiven Verteiler

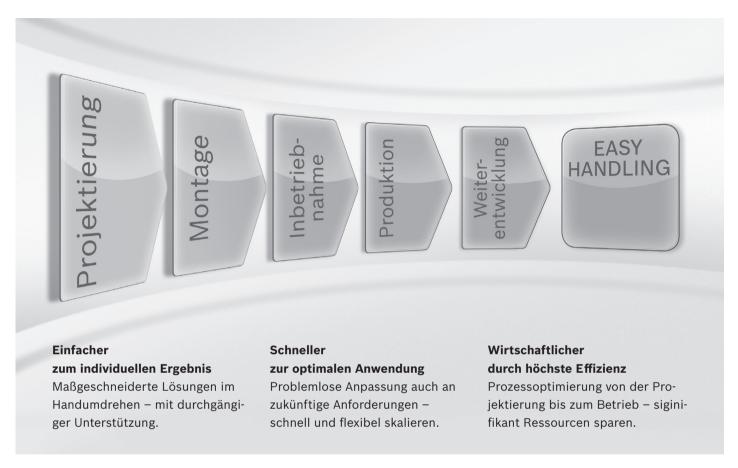

- 1) Kontur für Wellenschlauch Innendurchmesser 10
- 2) Kabeltülle
- 3) Kabelaufdruck It. Bestellungsvorschrift 7000-08001


Bosch Rexroth AG, R999000477/2018-08

Materialnummern / Technische Daten

Verwendung	Verlängerungsleitung für passiven Verteiler R911344592		Verlängerungsleitung für passive Verteiler R901425737 / R901429917	
Materialnummer	R911371982	R911371980	R911371981	R911371983
Bezeichnung	7000-40021-6540500	7000-12221-6541500	7000-48001-3770500	7000-17041-3771500
Länge	5,0 m	15,0 m	5,0 m	15,0 m
1.Anschlusart	Buchse gerade	, M12x1, 4-polig	Buchse gerade, M12x1, 8-polig	
2.Anschlusart	Stecker gerade, M12x1, 4-polig	freies Leitungsende	Stecker gerade, M12x1, 8-polig	freies Leitungsende
Funktionsanzeige		•	_	
Betriebsspannungsanzeige			_	
Kabelart	PUR s	chwarz	PUR	grau
Betriebsspannung	30 V AC/DC			
Betriebsstrom je Kontakt	max.4A je Kontakt		max.2A je Kontakt	
Schleppkettentauglich			√	
Torsionstauglich	✓			
Schweißfunkenbeständig	✓			
Leitungsquerschnitt	4x0,34 mm²		8x0,34 mm²	
Kabeldurchmesser D	4,7 +/- 0,2 mm		6,2 +/- 0,3 mm	
Biegeradius statisch	≥ ₹		5 x D	
Biegeradius dynamisch	≥ 10		D x D	
Biegezyklen	> 10 Mio.			
Max. zul. Verfahrgeschwindigkeit	3,3 m/s - bei 5 m Verfahrweg (typ.) bis 5 m/s - bei 0,9 m Verfahrweg		rweg	
Max. zul. Beschleunigung	≤ 30 m/s²			
Umgebungstemperatur fest verl.	-40 °C bis +80 °C (90° max. 10.000h)			
Umgebungstemperatur flexibel verl.	−25 °C bis +80 °C (90° max. 10.000h)			
Schutzart	IP67 (gesteckt & verschraubt)			
Zertifizierungen und Zulassungen		C E CULUS C	© PG ROHS	

Kombinationsbeispiele



Die perfekte Systemlösung für die perfekte Anwendung

Die Wirtschaftlichkeit Ihrer Produktionsprozesse bestimmt Ihren Erfolg im Wettbewerb. Im heute schnellen Wandel und den kurzen Produktlebenszyklen entscheiden vor allem die Flexibilität der Systeme und deren optimale Konzeption und Konfiguration. Mit EasyHandling wird das Automatisieren von Handhabungsaufgaben deutlich einfacher, schneller und wirtschaftlicher. EasyHandling ist nicht nur ein mechanischer Komponentenbaukasten, sondern vollzieht den Evolutionsschritt zur umfassenden Systemlösung – unsere beste Lösung für Ihre Anforderung.

EasyHandling – Einfacher. Schneller. Wirtschaftlicher.

Projektierung - bis zu 70% schneller

EasyHandling-Tools unterstützen den Anwender bereits bei der Komponentenauswahl – mit Lösungsvorschlägen samt Informationen zu Stücklisten, technischen Daten und CADZeichnungen.

Montage - bis zu 60% Zeit sparen

Dank formschlüssiger Schnittstellen sind alle mechanischen Komponenten auf Anhieb perfekt ausgerichtet und passgenau miteinander verbunden.

Inbetriebnahme - bis zu 90% Aufwand reduzieren

Mit dem intelligenten Inbetriebnahmeassistenten EasyWizard wird das Parametrieren und Konfigurieren nahezu zum Kinderspiel. So ist Ihr Handhabungssystem mit wenigen Klicks in kürzester Zeit einsatzbereit.

Produktion - wirtschaftlicher und effizienter

Rexroth unterstreicht die Effektivität mit einem Mehr an intelligenten Anwendungstools: Der Bediener erhält über die Software der Antriebsregler laufzeit- und wegeabhängige Wartungshinweise um Serviceintervalle einzuhalten. Das Ergebnis: erhöhte Lebensdauer und verringertes Ausfallrisiko.

Weiterentwicklungen - ständige Verbesserung

Schon jetzt für künftige Marktentwicklungen vorbereitet: EasyHandling-Systeme bestechen durch ihre systemische Offenheit. Mit flexibel adaptierbaren mechanischen oder elektrischen Komponenten können Sie schnell und effizient auf neue Produktionsanforderungen reagieren.

EasyHandling – mehr als nur ein Baukasten

Das modulare Systemkonzept, das ideal aufeinander aufbaut advanced comfort basic Controls Mechanics

basic - Mechanics nach Maß

EasyHandling basic umfasst alle mechatronischen Komponenten für den Aufbau von kompletten individuellen **Ein- und Mehrachssystemen**.

Die durchgängigen und standardisierten Schnittstellen der Komponenten machen die Kombination zu einem Kinderspiel. Praktische Tools und Hilfsmittel unterstützen bei der Auswahl und der Konfiguration.

comfort - noch schneller am Start

EasyHandling comfort ergänzt die basic Komponenten um **leistungsstarke und multiprotokollfähige Servoantriebe**. Die universellen und intelligenten Regelgeräte sind für eine Vielzahl von Handhabungsaufgaben perfekt geeignet.

Einzigartig: mit dem **Inbetriebnahmeassistenten EasyWizard** sind die Linearsysteme schon nach der Eingabe weniger produktspezifischer Parameter im Handumdrehen einsatzbereit.

advanced -

Controls für höchste Ansprüche

Mit der frei skalierbaren und leistungsstarken Motion-Logic-Lösung macht Easyhandling advanced die Konfiguration und Handhabung noch einfacher. Vordefinierte Funktionen ersparen langwieriges Programmieren und decken mehr als 90 Prozent aller Handhabungsanwendungen ab.

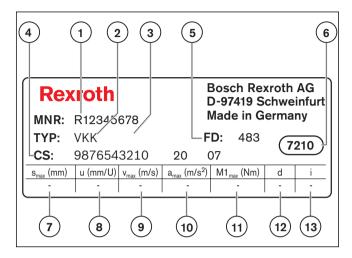
Weiterführende Informationen zu EasyHandling siehe Broschüre "EasyHandling – mehr als nur ein Baukasten" R999000044

Betriebsbedingungen

Normale Betriebsbedingungen

Umgebungstemperatur mit Rexroth Servomotor	0°C 40°C, ab 40°C Leistungseinbußen
Umgebungstemperatur Mechanik (Keine Taupunktunterschreitung)	- 10 °C 60 °C
Schutzart	IP 54
Motoren	Temperaturgrenzen der Motoren beachten

Erforderliche und ergänzende Dokumentationen


Weiterführende Hinweise und Informationen entnehmen Sie bitte der zu diesem Produkt gehörenden Dokumentation.

PDF Dateien dieser Dokumente finden Sie im Internet unter www.boschrexroth.com/mediadirectory.

Gerne senden wir Ihnen auch die gewünschten Dokumente zu. In Zweifelsfällen zum Einsatz dieses Produktes wenden Sie sich bitte an Bosch Rexroth.

Parametrierung (Inbetriebnahme)

Auf dem Typenschild sind neben den Referenzangaben zur Produktion des Linearsystems zusätzlich technische Parameter zur Inbetriebnahme angegeben

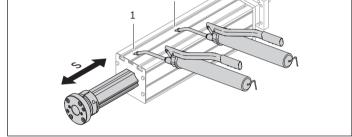
- 1 Materialnummer
- 2 Typenbezeichnung
- 3 Baugröße
- 4 Kundeninformation
- 5 Fertigungsdatum
- 6 Fertigungsstandort
- 7 $s_{max} = max. Verfahrbereich (mm)$
- 8 u = Vorschubkonstante ohne Getriebe (mm/U)
- 9 v_{max} = max. Geschwindigkeit ohne Getriebe (m/s)
- **10** a_{max} = max. Beschleunigung ohne Getriebe (m/s2)
- **11** M1_{max}= max. Antriebsdrehmoment am Motorzapfen (Nm)
- **12** d = Drehrichtung des Motors um in positiver Richtung zu verfahren

CW = Clockwise / im Uhrzeigersinn CCW = Counter Clockwise / gegen den CW Uhrzeigersinn

Schmierung und Wartung

Fettschmierung

Die Fettschmierung hat den Vorteil, dass Kugelgewindetriebe erst nach langen Wegen nachgeschmiert werden müssen. Das bedeutet, dass eine Nachschmieranlage in vielen Fällen entfallen kann.

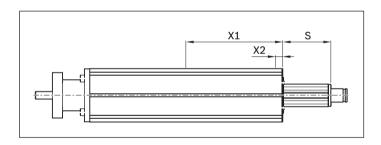

Es können alle hochwertigen Wälzlagerfette verwendet werden. Hinweise der Schmierstoffhersteller beachten! Soll ein möglichst langer Nachschmierintervall erreicht werden, so sind Fette nach DIN 51825-K2K und bei höheren

Lasten KP2K der NLGI-Klasse 2 nach DIN 51818 zu bevorzugen. Versuche zeigen, dass Fette der NLGI-Klasse 00 bei höheren Lasten nur ca. 50% der Laufleistung von Klasse 2 erreichen.

Das Nachschmierintervall ist von vielen Faktoren wie z. B. Verschmutzungsgrad, Betriebstemperatur, Belastung usw. abhängig. Deshalb können die nachfolgenden Angaben nur Richtwerte sein.

Schmierhinweise

Die Grundschmierung erfolgt durch den Hersteller. Die Vorschubmodule sind für Fettschmierung ausgelegt. Nur Schmierung des Kugelgewindetriebs und der Führung erforderlich. Keine weitere Wartung notwendig. Es müssen alle Schmierstellen mit Schmierstoff versorgt werden. Hierfür die Pinole bis zur Schmierposition "S" einfahren. Bei der Anschlusskonstruktion berücksichtigen, dass die Schmierposition erreicht werden kann. Nähere Informationen siehe "Anleitung VKK".



Schmierstellen für:

- 1) Führung
- 2) Kugelgewindetrieb

Postion Schmiernippel

 Um die Schmierstellen zu erreichen, die Pinole bis zur Schmierposition S ausfahren.

Größe	Maße (mm)			
	Länge	s	X1	X2
VKK-050	240	138	85,0	-5,75 ¹⁾
	280	178		
	360	258		
	480	378		
VKK-070	280	120	123,5	7,50
	320	160		
	400	240		
	520	360		
	600	440		
VKK-100	360	130	154,0	10,00
	400	170		
	480	250		
	600	370		
	680	450		

¹⁾ Die Schmierbohrung befindet sich in einer vorgelagerten Schmierplatte.

Empfohlene Schmierstoffe

Schmierhinweise

Vorschubmodule sind mit Dynalub 510 bzw. Dynalub 520 grundbefettet und nur für Fettschmierung über Handpresse ausgelegt.

VKK	Fett	Konsistenzklasse	Empfohlenes	Materialnummer
	(DIN)	DIN 51818	Fett	(Kartusche 400 g)
-050	KP00K	NLGI 00	Dynalub 520	R3416 043 00
	(DIN 51825)			
-070, -100	KP2K	NLGI 2	Dynalub 510	R3416 037 00
	(DIN 51826)			

Schmierstoffmengen

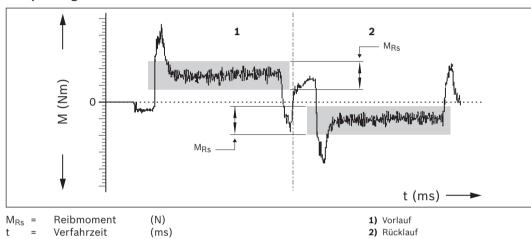
Schmierstoffmenge und Schmierstoffintervalle siehe "Anleitung Vorschubmodule".

△ Fette mit Festschmierstoffanteil (z.B. Graphit oder MoS₂) dürfen nicht verwendet werden.

Dokumentation

Standardprotokoll Option 01

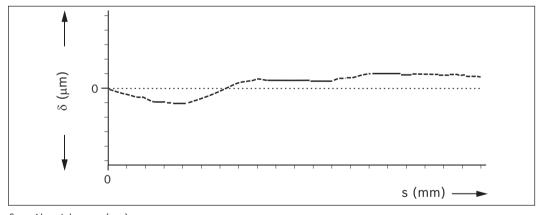
Das Standardprotokoll dient als Bestätigung dafür, dass die aufgeführten Kontrollen durchgeführt wurden und die gemessenen Werte innerhalb der zulässigen Toleranzen liegen. Im Standardprotokoll aufgeführte Kontrollen:


- ► Funktionskontrolle mechanischer Komponenten
- ► Funktionskontrolle elektrischer Komponenten
- ► Ausführung gemäß Auftragsbestätigung

Reibmomentmessung des kompletten Systems Option 02

Alle Leistungen nach Standardprotokoll.

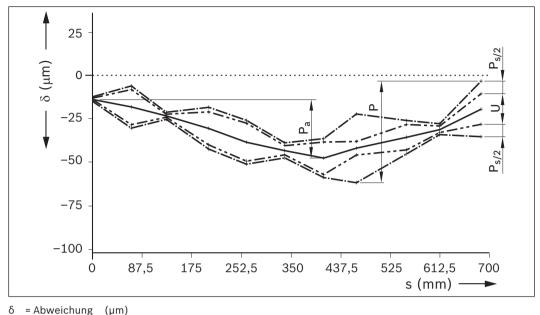
Das Reibmoment M wird über den gesamten Verfahrweg gemessen.


Beispieldiagramm

Steigungsabweichung des Gewindetriebs Option 03

Alle Leistungen nach Standardprotokoll.

Zusätzlich wird neben der grafischen Darstellung (siehe Abbildung) ein Messprotokoll in Tabellenform mitgeliefert.


- δ = Abweichung (μ m)
- s = Messweg (mm)

Positioniergenauigkeit nach VDI/DGQ 3441 Option 05

Über den Verfahrweg werden in ungleichmäßigen Abständen Messpositionen gewählt. Dadurch werden selbst periodische Abweichungen δ in μm beim Positionieren erfasst. Jede Messposition wird mehrfach von beiden Seiten angefahren.

Daraus werden die folgenden Kenngrößen ermittelt.

Beispieldiagramm

s = Messweg (mm

Positionsunsicherheit P

Die Positionsunsicherheit entspricht der Gesamtabweichung.

Sie umfasst alle systematischen und zufälligen Abweichungen beim Positionieren.

In der Positionsunsicherheit sind folgende Kennwerte berücksichtigt:

- ► Positionsabweichung
- Umkehrspanne
- ▶ Positionsstreubreite

Positionsabweichung Pa

Die Positionsabweichung entspricht der maximal auftretenden Differenz der Mittelwerte aller Messpositionen. Sie beschreibt systematische Abweichungen.

Umkehrspanne U

Die Umkehrspanne entspricht der Differenz der Mittelwerte der beiden Anfahrrichtungen. Die Umkehrspanne wird in jeder Messposition ermittelt. Sie beschreibt systematische Abweichungen.

Positionsstreubreite Ps

Die Positionsstreubreite beschreibt die Auswirkungen zufälliger Abweichungen. Sie wird in jeder Messposition ermittelt.

Bestellbeispiel VKK-100

	Kurzbezeichnung, Länge VKK-100-NN-1, mm		Führung	Antrieb				Tischteil			
Ausfüh	rung				KGT Größe				Ohne Anbauflansch	Mit Anbauflansch	
					Spindelzapfen	20x5	25x10	20x20	5	(M)	
lansch	OF01				Ø 14	01	02	03			
mit KGT ohne Motorflansch			OF01		Ø 14 PF- Nut	11	12	13	03	04	
mit KGT und Motorflansch	MF01		MF01	L = 280 mm 12 L = 320 mm 13 L = 400 mm 15 L = 520 mm 18	Ø 14	01	02	03	03	04	
mit KGT und Riemenvorgelege	RV03	RV02	RV01 bis RV04	L = 600 mm 20	Ø 14	01	02	03	03	04	

Motoranbau		Motor		Abdeckung		Schalter		Dokumentation		
Übersetzung i =	Anbausatz	für Motor	ohne	mit	ohne	mit			Standard- protokoll	Mess- protokoll
			Bre	mse	Falte	nbalg				
	00	-	0	00						
	03	MSM 041B	130	131			Ohne Schalter Magnetfeldsensor:	00		02
1					00	01	Reed-SensorHall-Sensor (PNP-Öffner)	21 22	01	03
	05	MSK 050C	88	89			Magnetfeldsensor mit Stecker: - Reed-Sensor	58		05
1	27	MSM 041B	130	131			- Hall-Sensor (PNP-Öffner)	59		
1,5	28	WSW 041B	130	131						
1	29	MOVIOSOS								
1,5	30	MSK 050C	88	89						

Bestellbeispiel

Ihren lokalen Ansprechpartner finden Sie unter:

www.boschrexroth.com/adressen

Vorschubmodul VKK-100-NN-1

Bestellangaben	Option	Erläuterung
Kurzbezeichnung	VKK-100	
Ausführung	MF01	mit Motorflansch für Motoranbau
Führung	15	Kugelschienenführung integriert; L = 480 mm
Antrieb	02	Kugelgewindetrieb KGT Größe $d_0xP = 25x10$
Tischteil	04	mit Anbauflansch
Motoranbau	05	für Motor MSK 050C
Motor	89	Motor MSK 050C mit Bremse
Abdeckung	01	mit Faltenbalg
1. Schalter	21	Reed-Sensor
2. Schalter	22	Hall-Sensor, PNP-Öffner
3. Schalter	21	Reed-Sensor
Dokumentation	01	Standardprotokoll

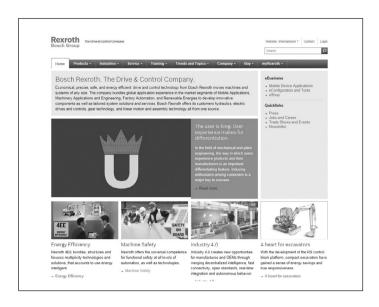
Anfrage oder Bestellung

Bosch	Rexroth AG
97419	Schweinfur
Dautaa	hland

		Deutschland
Vom Kunden auszufüllen	Option	
Anfrage		
Bestellung		
Bestellangaben	Option	
Kurzbezeichnung	V K K - N N - 1	
Ausführung =		
Führung =		
Antrieb =		
Tischteil =		
Motoranbau =		
Motorgeometriecode ¹⁾ =		
Motor =		
Abdeckung =		
1. Schalter =		
2. Schalter =		
3. Schalter =		
Dokumentation =		
Bestellmenge	Stückzahl	
einmalig		
monatlich		
jährlich		
je Bestellung		
Bemerkungen		
Absender		
Firma		
Anschrift		
Zuständig		
Abteilung		
Telefax		
Email		

Weiterführende Informationen

Homepage Bosch Rexroth:


http://www.boschrexroth.com

http://www.boschrexroth.com/de/de/produkte/produktgruppen/lineartechnik/linearsysteme/vorschubmodule/index

Notizen

Bosch Rexroth AG

Ernst-Sachs-Straße 100 97424 Schweinfurt, Deutschland

Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com

Ihre lokalen Ansprechpartner finden Sie unter:

www.boschrexroth.com/contact